Главная > Химия > Общая химия
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

174. Углеводы.

К углеводам относятся сахара и вещества, превращающиеся в них при гидролизе. Углеводы — продукты растительного и животного происхождения. Наряду с белками и жирами, они являются важнейшей составной частью пищи человека и животных; многие из них используются как техническое сырье. Углеводы подразделяют на моносахариды, дисахариды и полисахариды.

Моносахариды — простейшие углеводы, они не подвергаются гидролизу — не расщепляются водой на более простые углеводы.

Глюкоза, или виноградный сахар, — важнейший из моносахаридов; белые кристаллы сладкого вкуса, легко растворяющиеся в воде. Содержится в соке винограда, во многих фруктах, а также в крови животных и человека. Мышечная работа совершается главным образом за счет энергии, выделяющейся при окислении глюкозы.

Глюкоза является шестиатомным альдегидоспиртом; строение ее можно представить формулой (а):

Глюкоза получается при гидролизе полисахаридов крахмала и целлюлозы (под действием ферментов или минеральных кислот). Применяется как средство усиленного питания или как лекарственное вещество, при отделке тканей, как восстановитель — в производстве зеркал.

Фруктоза, или плодовый сахар, — моносахарид, спутник глюкозы во многих плодовых и ягодных соках; значительно слаще глюкозы; в смеси с ней входит в состав меда. Представляет собой шестиатомный кетоноспирт; строение фруктозы выражает приведенная выше формула (б).

В формулах глюкозы (а) и фруктозы (б) показано характерное для этих моносахаридов относительное пространственное расположение атомов Н и групп ОН при входящих в углеродную цепь асимметрических (стр. 446) атомах углерода (они помечены звездочками).

Моносахариды как альдегидо- или кетоноспирты являются соединениями со смешанными функциями; природа их усложнена возможностью внутримолекулярных взаимодействий спиртовых гидроксильных групп с альдегидной или кетонной карбонильной группой. Благодаря этому моносахариды существуют и вступают в реакции не только в открытой цепной форме, но еще и в циклических формах. Углеродная цепь моносахарида, например глюкозы (а), может принимать конформацию (стр. 442) «клешни» (см. ниже формулу при этом С-атом, несущий карбонильную группу, сближается со спиртовой группой при С-атоме; атом Н из группы ОН перемещается (как показано пунктирной стрелкой) к карбонильному кислороду, а кислород при С-атоме соединяется с (карбонильным) С-атомом (это также показано пунктирной стрелкой). В результате замыкается шестичленное, содержащее атом кислорода, кольцо. Так образуются две циклические - и формы глюкозы, отличающиеся пространственным расположением атома Н и группы ОН при (в цикле он становится асимметрическим) С-атоме. Это можно представить перспективными формулами:

Перспективные формулы чаще пишут упрощенно — без символов С, образующих кольцо и соединенных с ними — Н:

В формулах циклических форм показано (пунктирной стрелкой), что возможен обратный переход атома Н из группы ОН при С-атоме к кислороду кольца. Последнее при этом раскрывается и образуется цепная форма.

Природная кристаллическая глюкоза (виноградный сахар) представляет собой циклическую -форму (т. пл. моногидрата , безводной ). При растворении в воде она, как показано выше на схеме, переходит в цепную, а через нее в р-форму; при этом устанавливается динамическое равновесие между всеми формами . -форма также может быть выделена в кристаллическом виде (т. пл. ); в водном растворе и она образует равновесную систему, содержащую все формы. Цепная же форма существует лишь в растворах, причем в очень небольших количествах (доли процента), а в свободном виде не выделена.

Изомерные формы соединений, способные переходить друг в друга, называют таутомерными формами, или таутомерами, а само существование их — явлением таутомерии; оно весьма распространено среди органических соединений.

Дисахариды — углеводы, которые при нагревании с водой в присутствии минеральных кислот или под влиянием ферментов подвергаются гидролизу, расщепляясь на две молекулы моносахаридов.

Свекловичный, или тростниковый, сахар (сахароза), - важнейший из дисахаридов. Получается из сахарной свеклы (в ней содержится до сахарозы от сухого вещества) или из сахарного тростника (откуда и происходят названия); содержится также в соке березы, клена и некоторых фруктов. Сахароза — ценнейший пищевой продукт. При гидролизе она распадается с образованием молекулы глюкозы и молекулы фруктозы (образующаяся смесь этих моносахаридов называется инвертным сахаром):

Полисахариды. углеводы во многом отличаются от моно- и дисахаридов — не имеют сладкого вкуса, в большинстве нерастворимы в воде; они представляют высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов, затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов. Важнейшие представители полисахаридов — крахмал и целлюлоза (клетчатка). Их молекулы построены из звеньев , являющихся остатками шестичленных циклических форм молекул глюкозы, потерявших молекулу воды; поэтому состав и крахмала, и целлюлозы выражается общей формулой . Различие же в свойствах этих полисахаридов обусловлено пространственной изомерией образующих их моносахаридных молекул: крахмал построен из звеньев , а целлюлоза — -формы глюкозы.

Крахмал белый (под микроскопом зернистый) порошок, нерастворимый в холодной воде; в горячей — набухает, образуя коллоидный раствор (крахмальный клейстер); с раствором кода дает синее окрашивание (характерная реакция). Молекулы крахмала неоднородны по величине — значение в них колеблется от сотен до 1000—5000 и более.

Крахмал образуется в результате фотосинтеза в листьях растений, откладывается «про запас» в клубнях, корневищах, зернах. В пищеварительном тракте человека и животных крахмал подвергается гидролизу и превращается в глюкозу, которая усваивается организмом.

В технике превращение крахмала в глюкозу (процесс осахаривания) осуществляется путем кипячения его в течение нескольких часов с разбавленной серной кислотой (каталитическое влияние серной кислоты осахаривание крахмала было обнаружено в 1811 г. русским ученым К. С. Кирхгофом). Чтобы из полученного раствора удалить серную кислоту, к нему прибавляют мел, образующий с серкой кислотой нерастворимый сульфат кальция. Последний отфильтровывают, и раствор упаривают. Получается густая сладкая масса, так называемая крахмальная патока, содержащая, кроме глюкозы, значительное количество других продуктов гидролиза крахмала. Патока применяется для приготовления кондитерских изделий и для различных технических целей.

Если требуется получить чистую глюкозу, то кипячение крахмала ведут дольше, чем достигается более полное превращение его в глюкозу.

Полученный после нейтрализации и фильтрования раствор сгущают, пока из него не начнут выпадать кристаллы глюкозы.

При нагревании сухого крахмала до происходит частичное разложение его и получается смесь менее сложных, чем крахмал, полисахаридов, называемая декстрином. Декстрин применяется для отделки тканей и изготовления клея. Превращением крахмала в декстрин объясняется образование блестящей корки на печеном хлебе, а также блеск накрахмаленного белья.

Целлюлоза, или клетчатка, волокнистое вещество, главная составная часть оболочек растительных клеток. Значение в молекулах целлюлозы обычно составляет около 3000, но может достигать 6000—12 000. Наиболее чистая природная целлюлоза — хлопковое волокно — содержит целлюлозы. В древесине хвойных деревьев целлюлозы содержится около (в состав древесины наряду с целлюлозой входят ее спутники, среди них важнейшими являются лигнин — природный полимер, построенный из некоторых ароматических кислородсодержащих соединений ряда бензола, и гемицеллюлоза — родственные целлюлозе полисахариды) .

Значение целлюлозы очень велико. Достаточно указать, что огромное количество хлопкового волокна идет для выработки хлопчатобумажных тканей. целлюлозы получают бумагу и кар-тон, а путем химической переработки — целый ряд разнообразных продуктов: искусственное волокно, пластические массы, лаки, бездымный порох, этиловый спирт и др.

Наиболее распространенный промышленный способ выделения целлюлозы из древесины заключается в обработке измельченной древесины при повышенных температуре и давлении раствором гидросульфита кальция . При этом древесина разрушается, содержащийся в ней лигнин переходит в раствор, целлюлоза же остается в неизмененном виде. Затем целлюлозу отделяют от раствора, промывают водой, сушат и направляют на дальнейшую переработку. Целлюлозу, полученную описанным выше способом, часто называют сульфитной целлюлозой.

Целлюлоза не растворяется в воде, диэтиловом эфире и этиловом спирте, она не расщепляется под влиянием разбавленных кислот, устойчива к действию щелочей и слабых окислителей.

При обработке на холоду концентрированной серной кислотой целлюлоза растворяется в ней, образуя вязкий раствор. Если этот раствор вылить в избыток воды, выделяется белый хлопьевидный продукт, так называемый амилоид, представляющий собой частично гидролизованную целлюлозу. Он сходен с крахмалом по реакции с иодом (синее окрашивание; целлюлоза не дает этой реакции). Если непроклеенную бумагу опустить на короткое время в концентрированную серную кислоту и затем сейчас же промыть, то образующийся амилоид склеивает волокна бумаги, делая ее более плотной и прочной, Так изготовляется пергаментная бумага.

При продолжительном действии на целлюлозу концентрированных растворов минеральных кислот она при нагревании подвергается гидролизу, конечным продуктом которого является глюкоза.

В молекулах целлюлозы содержатся спиртовые гидроксильные группы: в каждом остатке глюкозы таких групп три и формулу целлюлозы можно представить так: . Поэтому из нее могут быть получены простые и сложные эфиры.

Сложные эфиры целлюлозы и азотной кислоты — нитраты целлюлозы (нитроцеллюлоза) — могут иметь состав и . Они идут на изготовление бездымного пороха (пироксилина), целлулоида, нитролаков и т. д. Из уксуснокислых эфиров целлюлозы (ацетаты целлюлозы, или ацетилцеллюлоза), например , изготовляют негорючую фото- и кинопленку, различные прозрачные пластические массы и лаки.

Большое промышленное значение имеет химическая переработка целлюлозы в искусственное волокно.

Производство искусственного волокна из целлюлозы осуществляется тремя способами: вискозным, ацетатным и медиоаммиачным.

Для получения волокна по вискозному способу целлюлозу обрабатывают едким натром, а затем сероуглеродом. Образующуюся оранжевую массу, называемую ксантогенатом, растворяют в слабом растворе едкого натра, получая так называемую вискозу. Последнюю продавливают через специальные колпачки с мельчайшими отверстиями (фильеры) в осадительную ваину, содержащую водный раствор серной кислоты. При взаимодействии с серной кислотой щелочь нейтрализуется, и вискоза разлагается, отщепляя сероуглерод и образуя блестящие нити несколько измененной по составу целлюлозы. Эти нити представляют собой вискозное волокно.

При получении по ацетатному способу раствор ацетата целлюлозы в ацетоне продавливается через фильеры навстречу теплому воздуху. Ацетон испаряется и струйки раствора превращаются в тончайшие нити — ацетатное волокно.

Менее распространенным является медноаммиачный способ, при котором используется характерное свойство целлюлозы — ее способность растворяться в аммиачном растворе оксида (реактив Швейцера). Из этого раствора действием кислот вновь выделяют целлюлозу. Нити волокна получают продавливаиием медиоаммиачного раствора сквозь фильеры в осадительную ваину с раствором кислоты.

<< Предыдущий параграф Следующий параграф >>
Оглавление