Главная > Химия > Общая химия
Макеты страниц

212. Жесткость природных вод и ее устранение.

Ввиду широкой распространенности кальция, соли его почти всегда содержатся в природной воде. Из природных солей кальция только гипс несколько растворим в воде, однако, если вода содержит диоксид углерода, то карбонат кальция тоже может переходить в раствор в виде гидрокарбоната .

Природная вода, содержащая в растворе большое количество солей кальция или магния, называется жесткой водой в противоположность мягкой воде, содержащей мало солей кальция и магния или совсем не содержащей их.

Суммарное содержание этих солей в воде называется ее общей жесткостью. Она подразделяется на карбонатную и некарбонатную жесткость.

Первая из них обусловлена присутствием гидрокарбонатов кальция и магния, вторая — присутствием солей сильных кислот — сульфатов или хлоридов кальция и магния. При длительном кипячении воды, обладающей карбонатной жесткостью, в ней появляется осадок, состоящий главным образом из , и одновременно выделяется . Оба эти вещества появляются вследствие разложения гпдрокарбоната кальция:

Поэтому карбонатную жесткость называют также временной жесткостью. Количественно временную жесткость характеризуют содержанием гидрокарбонатов, удаляющихся из воды при ее кипячении в течение часа. Жесткость, остающаяся после такого кипячения, называется постоянной жесткостью.

В СССР жесткость воды выражают суммой миллиэквивалентов ионов кальция и магния, содержащихся в воды. Один миллиэквивалент жесткости отвечает содержанию 20,04 мг/л или 12,16 мг/л .

Жесткость природных вод изменяется в широких пределах. Она различна в разных водоемах, а в одной и той же реке изменяется в течение года (минимальна во время паводка). В табл. 33 приведены величины жесткости воды некоторых рек СССР в летний период.

Таблица 33. Жесткость воды некоторых рек СССР

Жесткость вод морей значительно выше, чем рек и озер. Так, вода Черного моря имеет общую жесткость 65,5 мэкв/л. Среднее значение жесткости воды мирового океана 130,5 мэкв/л (в том числе на приходится 22,5 мэкв/л, на мэкв/л).

Присутствие в воде значительного количества солей кальция или магния делает воду непригодной для многих технических целей. Так, при продолжительном питании паровых котлов жесткой водой их стенки постепенно покрываются плотной коркой накиии. Такая корка уже при толщине слоя в сильно понижает передачу теплоты стенками котла и, следовательно, ведет к увеличению расхода топлива. Кроме того, она может служить причиной образования вздутий и трещин как в кипятильных трубах, так и на стенках самого котла.

Жесткая вода не дает пены с мылом, так как содержащиеся в мыле растворимые натриевые соли жирных кислот —пальмитиновой и стеариновой — переходят в нерастворимые кальциевые соли тех же кислот:

Жесткой водой нельзя пользоваться при проведении некоторых технологических процессов, например при крашении.

Приведенные выше примеры указывают на необходимость удаления из воды, применяемой для технических целей, солей кальция и магния. Удаление этих солей, называемое водоумягчением, входит в систему водоподготовки — обработки природной воды, используемой для питания паровых котлов и для различных технологических процессов.

В ходе водоподготовки вода освобождается от грубодисперсных и коллоидных примесей и от растворенных веществ. Взвешенные и коллоидные примеси удаляют коагуляцией их добавляемыми к воде солями (обычно ) с последующей фильтрацией.

Для водоумягчения применяют методы осаждения и ионного обмена. Путем осаждения катионы и переводят в малорастворимые соединения, выпадающие в осадок. Это достигается либо кипячением воды, либо химическим путем — введением в воду соответствующих реагентов. При кипячении гидрокарбонаты кальция и магния превращаются в и

в результате чего устраняется только карбонатная жесткость.

При химическом методе осаждения чаще всего в качестве осадителя пользуются известью или содой. При этом в осадок (также в виде и ) переводятся все соли кальция и магния.

Для устранения жесткости методом ионного обмена (см. § 110) или катионирования воду пропускают через слой катионита. При этом катионы и , находящиеся в воде, обмениваются на катионы , содержащиеся в применяемом катионите. В некоторых случаях требуется удалить из воды не только катионы и , но и другие катионы и анионы. В таких случаях воду пропускают последовательно через катионит, содержащий в обменной форме водородные ионы (Н-катионит), и анионит, содержащий гидроксид-ионы (ОН-анионит). В итоге вода освобождается как от катионов, так и от анионов солей. Такая обработка воды называется ее обессоливанием.

Когда процесс ионного обмена доходит до равновесия, ионит перестает работать — утрачивает способность умягчать воду. Однако любой ионит легко подвергается регенерации. Для этого через катионит пропускают концентрированный раствор или .

При этом ионы и выходят в раствор, а катионит вновь насыщается ионами или . Для регенерации анионита его обрабатывают раствором щелочи или соды (последний, вследствие гидролиза карбонатного иона, также имеет щелочную реакцию). В результате поглощенные анионы вытесняются в раствор, а анионит вновь насыщается ионами .

<< Предыдущий параграф Следующий параграф >>
Оглавление