Научная библиотека
Клуб читателей
Вычисления в дробях
Информационный ассистент
sc_lib@list.ru

Поиск в библиотеке:
Научная библиотека
избранных естественно-научных изданий
научная-библиотека.рф
Логин:
Пароль:
Регистрация
или

<< Предыдущий параграфСледующий параграф >>

< Назад
Далее >

Для отображения сканов страниц необходимо включить JavaScript в настройках браузера.

< Назад
Далее >
<< Предыдущий параграфСледующий параграф >>

Макеты страниц

64. Смещение химического равновесия. Принцип Ле Шателье.

Если система находится в состоянии равновесия, то она будет пребывать в нем до тех пор, пока внешние условия сохраняются постоянными. Если же условия изменятся, то система выйдет из равновесия — скорости прямого и обратного процессов изменятся неодинаково — будет протекать реакция. Наибольшее значение имеют случаи нарушения равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в равновесии, давления или температуры.

Рассмотрим каждый из этих случаев.

Нарушение равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в реакции. Пусть водород, иодоводород и пары иода находятся в равновесии друг с другом при определенных температуре и давлении. Введем в систему дополнительно некоторое количество водорода. Согласно закону действия масс, увеличение концентрации водорода повлечет за собой увеличение скорости прямой реакции — реакции синтеза HI, тогда как скорость обратной реакции не изменится. В прямом направлении реакция будет теперь протекать быстрее, чем в обратном. В результате этого концентрации водорода и паров иода будут уменьшаться, что повлечет за собою замедление прямой реакции, а концентрация HI будет возрастать, что вызовет ускорение обратной реакции. Через некоторое время скорости прямой и обратной реакций вновь сравняются— установится новое равновесие. Но при этом концентрация HI будет теперь выше, чем она была до добавления , а концентрация — ниже.

Процесс изменения концентраций, вызванный нарушением равновесия, называется смещением или сдвигом равновесия. Если при этом происходит увеличение концентраций веществ, стоящих в правой части уравнения (и, конечно, одновременно уменьшение концентраций веществ, стоящих слева), то говорят, что равновесие смещается вправо, т. е. в направлении течения прямой реакции; при обратном изменении концентраций говорят о смещении равновесия влево — в направлении обратной реакции. В рассмотренном примере равновесие сместилось вправо. При этом то вещество , увеличение концентрации которого вызвало нарушение равновесия, вступило в реакцию — его концентрация понизилась.

Таким образом, при увеличении концентрации какого-либо из веществ, участвующих в равновесии, равновесие смещается в сторону расхода этого вещества; при уменьшении концентрации какого-либо из веществ равновесие смещается в сторону образования этого вещества.

Нарушение равновесия вследствие изменения давления (путем уменьшения или увеличения объема системы). Когда в реакции участвуют газы, равновесие может нарушиться при изменении объема системы.

Рассмотрим влияние давления на реакцию между монооксидом азота и кислородом:

Пусть смесь газов , и находится в химическом равновесии при определенной температуре и давлении. Не изменяя температуры, увеличим давление так, чтобы объем системы уменьшился в 2 раза. В первый момент парциальные давления и концентрации всех газов возрастут вдвое, но при этом изменится соотношение между скоростями прямой и обратной реакций — равновесие нарушится.

В самом деле, до увеличения давления концентрации газов имели равновесные значения , и , а скорости прямой и обратной реакций были одинаковы и определялись уравнениями:

В первый момент после сжатия концентрации газов увеличатся вдвое по сравнению с их исходными значениями и будут равны соответственно , и . При этом скорости прямой и обратной реакций будут определяться уравнениями:

Таким образом, в результате увеличения давления скорость прямой реакции возросла в 8 раз, а обратной — только в 4 раза. Равновесие в системе нарушится — прямая реакция будет преобладать над обратной. После того как скорости сравняются, вновь установится равновесие, но количество в системе возрастет, равновесие сместится вправо.

Нетрудно видеть, что неодинаковое изменение скоростей прямой и обратной реакций связано с тем, что в левой и в правой частях уравнения рассматриваемой реакции различно число молекул газов: одна молекула кислорода и две молекулы монооксида азота (всего три молекулы газов) превращаются в две молекулы газа — диоксида азота. Давление газа есть результат ударов его молекул о стенки сосуда; при прочих равных условиях давление газа тем выше, чем больше молекул заключено в данном объеме газа. Поэтому реакция, протекающая с увеличением числа молекул газов, приводит к возрастанию давления, а реакция, протекающая с уменьшением числа молекул газов, — к его понижению.

Помня об этом, вывод о влиянии давления на химическое равновесие можно сформулировать так:

При увеличении давления путем сжатия системы равновесие сдвигается в сторону уменьшения числа молекул газов, т. е. в сторону понижения давления, при уменьшении давления равновесие сдвигается в сторону возрастания числа молекул газов, т. е. в сторону увеличения давления.

В том случае, когда реакция протекает без изменения числа молекул газов, равновесие не нарушается при сжатии или при расширении системы. Например, в системе

равновесие не нарушается при изменении объема; выход HI не зависит от давления.

Нарушение равновесия вследствие изменения температуры. Равновесие подавляющего большинства химических реакций сдвигается при изменении температуры. Фактором, который определяет направление смещения равновесия, является при этом знак теплового эффекта реакции. Можно показать, что при повышении температуры равновесие смещается в направлении эндотермической, а при понижении — в направлении экзотермической реакции.

Так, синтез аммиака представляет собой экзотермическую реакцию

Поэтому при повышении температуры равновесие в системе сдвигается влево — в сторону разложения аммиака, так как этот процесс идет с поглощением теплоты.

Наоборот, синтез оксида азота (II) представляет собой эндотермическую реакцию:

Поэтому при повышении температуры равновесие в системе сдвигается вправо — в сторону образования .

Закономерности, которые проявляются в рассмотренных примерах нарушения химического равновесия, представляют собою частные случаи общего принципа, определяющего влияние различных факторов на равновесные системы. Этот принцип, известный под названием принципа Ле Шателье, в применении к химическим равновесиям можно сформулировать так:

Если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.

Действительно, при введении в систему одного из веществ, участвующих в реакции, равновесие смещается в сторону расхода этого вещества. "При повышении давления оно смещается так, что давление в системе снижается; при повышении температуры равновесие смещается в сторону эндотермической реакции — температура в системе падает.

Принцип Ле Шателье распространяется не только на химические, но и на различные физико-химические равновесия. Смещение равновесия при изменении условий таких процессов, как кипение, кристаллизация, растьорение, происходит в соответствии с принципом Ле Шателье.

<< Предыдущий параграфСледующий параграф >>

Оглавление

ВВЕДЕНИЕ
Глава I. АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ
4. Закон сохранения массы.
5. Основное содержание атомно-молекулярного учения.
6. Простое вещество и химический элемент.
7. Закон постоянства состава.
8. Закон объемных отношений.
9. Атомные и молекулярные массы. Моль.
10. Определение молекулярных масс веществ, находящихся в газообразном состоянии.
11. Парциальное давление газа.
12. Эквивалент. Закон эквивалентов.
13. Определение атомных масс. Валентность.
14. Химическая символика.
15. Важнейшие классы и номенклатура неорганических веществ.

16. Химические расчеты.
Глава II ПЕРИОДИЧЕСКИЙ ЗАКОН Д. И. МЕНДЕЛЕЕВА
17. Периодический закон Д. И. Менделеева.
18. Периодическая система элементов.
19. Значение периодической системы.
Глава III СТРОЕНИЕ АТОМА. РАЗВИТИЕ ПЕРИОДИЧЕСКОГО ЗАКОНА
20. Радиоктивность.
21. Ядерная модель атома.
22. Атомные спектры.
23. Квантовая теория света.
24. Строение электронной оболочки атома по Бору.
25. Исходные представления квантовой механики.
26. Волновая функция.
27. Энергетическое состояние электрона в атоме.
29. Орбитальное квантовое число. Формы электронных облаков.
30. Магнитное и спиновое квантовые числа.
31. Многоэлектронные атомы.
32. Принцип Паули. Электронная структура атомов и периодическая система элементов.
33. Размеры атомов и ионов.
34. Энергия ионизации и сродство к электрону.
35. Строение атомных ядер. Изотопы.
36. Радиоактивные элементы и их распад.
37. Искусственная радиоктивность. Ядерные реакции.
Глава IV. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ МОЛЕКУЛ
38. Теория химического строения.
39. Ковалентная связь. Метод валентных связей.
40. Неполярная и полярная ковалентная связь.
41. Способы образования ковалентной связи.
42. Направленность ковалентной связи.
43. Гибридизация атомных электронных орбиталей.
44. Многоцентровые связи.
45. Метод молекулярных орбиталей.
46. Ионная связь.
47. Водородная связь.
Глава V. СТРОЕНИЕ ТВЕРДОГО ТЕЛА И ЖИДКОСТИ
48. Межмолекулярное взаимодействие.
49. Кристаллическое состояние вещества.
50. Внутреннее строение кристаллов.
51. Реальные кристаллы.
52. Аморфное состояние вещества.
53. Жидкости.
Глава VI. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ
54. Превращения энергии при химических реакциях.
55. Термохимия.
56. Термохимические расчеты.
57. Скорость химической реакции.
59. Зависимость скорости реакции от температуры и от природы реагирующих веществ.
60. Катализ.
61. Скорость реакции в гетерогенных системах.
62. Цепные реакции.
63. Необратимые и обратимые реакции. Химическое равновесие.
64. Смещение химического равновесия. Принцип Ле Шателье.
65. Факторы, определяющие направление протекания химических реакций.
66. Термодинамические величины. Внутренняя энергия и энтальпия.
67. Термодинамические величины. Энтропия и энергия Гиббса.
68. Стандартные термодинамические величины. Химико-термодинамические расчеты.
Глава VII. ВОДА, РАСТВОРЫ
69. Вода в природе.
70. Физические свойства воды.
71. Диаграмма состояния воды.
72. Химические свойства воды.
73. Характеристика растворов. Процесс растворения.
74. Способы выражения состава растворов.
75. Гидраты и кристаллогидраты.
76. Растворимость.
77. Пересыщенные растворы.
78. Осмос.
79. Давление пара растворов.
80. Замерзание и кипение растворов.
Глава VIII. РАСТВОРЫ ЭЛЕКТРОЛИТОВ
81. Особенности растворов солей, кислот и оснований.
82. Теория электролитической диссоциации.
83. Процесс диссоциации.
84. Степень диссоциации. Сила электролитов.
85. Константа диссоциации.
86. Сильные электролиты.
87. Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации.
88. Ионно-молекулярные уравнения.
89. Произведение растворимости.
90. Диссоциация воды. Водородный показатель.
91. Смещение ионных равновесий.
92. Гидролиз солей.
Глава IX. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ. ОСНОВЫ ЭЛЕКТРОХИМИИ
93. Окисленность элементов.
94. Окислительно-восстановительные реакции.
95. Составление уравнений окислительно-восстановительных реакций.
96. Важнейшие окислители и восстановители.
97. Окислительно-восстановительная двойственность.
98. Химические источники электрической энергии.
99. Электродные потенциалы.
100. Ряд напряжений металлов.
101. Электролиз.
102. Законы электролиза.
103. Электролиз в промышленности.
104. Электрохимическая поляризация.
Глава X. ДИСПЕРСНЫЕ СИСТЕМЫ. КОЛЛОИДЫ
105. Дисперсное состояние вещества.
106. Состояние вещества на границе раздела фаз.
107. Коллоиды и коллоидные растворы.
108. Дисперсионный анализ.
109. Сорбция и сорбционные процессы.
110. Ионообменная адсорбция.
111. Хроматография.
112. Электрокинетические явления.
113. Устойчивость и коагуляция дисперсных систем.
114. Структурообразование в дисперсных системах.
Глава XI. ВОДОРОД
115. Водород в природе. Получение водорода.
116. Свойства и применение водорода.
117. Пероксид водорода
Глава XII. ГАЛОГЕНЫ
118. Галогены в природе. Физические свойства галогенов.
119. Химические свойства галогенов.
120. Получение и применение галогенов.
121. Соединения галогенов с водородом.
122. Кислородсодержащие соединения галогенов.
Глава XIII. ГЛАВНАЯ ПОДГРУППА ШЕСТОЙ ГРУППЫ
123. Кислород в природе. Воздух.
124. Получение и свойства кислорода.
125. Озон.
126. Сера в природе. Получение серы.
127. Свойства и применение серы.
128. Сероводород. Сульфиды.
129. Диоксид серы. Сернистая кислота.
130. Триоксид серы. Серная кислота.
131. Получение и применение серной кислоты.
132. Пероксодвусерная кислота.
133. Тиосерная кислота.
134. Соединения серы с галогенами.
135. Селен (Selenium). Теллур (Tellurium).
Глава XIV. ГЛАВНАЯ ПОДГРУППА ПЯТОЙ ГРУППЫ
136. Азот в природе. Получение и свойства азота.
137. Аммиак. Соли аммония.
138. Фиксация атмосферного азота. Получение аммиака.
139. Гидразин. Гидроксиламин. Азидоводород.
140. Оксиды азота.
141. Азотистая кислота.
142. Азотная кислота.
143. Промышленное получение азотной кислоты.
144. Круговорот азота в природе.
145. Фосфор в природе. Получение и свойства фосфора.
146. Соединения фосфора с водородом и галогенами.
147. Оксиды и кислоты фосфора.
148. Минеральные удобрения.
149. Мышьяк (Arsenicum).
150. Сурьма (Stibium).
151. Висмут (Bismuthum).
Глава XV. ГЛАВНАЯ ПОДГРУППА ЧЕТВЕРТОЙ ГРУППЫ
152. Углерод в природе.
153. Аллотропия углерода.
154. Химические свойства углерода. Карбиды.
155. Диоксид углерода. Угольная кислота.
156. Оксид углерода (II).
157. Соединения углерода с серой и азотом.
158. Топливо и его виды.
159. Газообразное топливо.
160. Общая характеристика органических соединений.
161. Отличительные особенности органических соединений.
162. Теория химического строения органических соединений.
163. Классификация органических соединений.
164. Предельные (насыщенные) углеводороды.
165. Непредельные (ненасыщенные) углеводороды.
166. Предельные циклические углеводороды.
167. Ароматические углеводороды.
168. Галогенпроизводные углеводородов.
169. Спирты и фенолы.
170. Простые эфиры.
171. Альдегиды и кетоны.
172. Карбоновые кислоты.
173. Сложные эфиры карбоновых кислот. Жиры.
174. Углеводы.
175. Амины.
176. Аминокислоты и белки.
177. Природные и синтетические высокомолекулярные соединения (полимеры).
178. Кремний в природе. Получение и свойства кремния.
179. Соединения кремния с водородом и галогенами.
180. Диоксид кремния.
181. Кремниевые кислоты и их соли.
182. Стекло.
183. Керамика.
184. Цемент.
185. Кремнийорганические соединения.
186. Германий (Germanium).
187. Олово (Stannuin).
188. Свинец (Plumbum).
189. Свинцовый аккумулятор.
Глава XVI. ОБЩИЕ СВОЙСТВА МЕТАЛЛОВ. СПЛАВЫ
190. Физические и химические свойства металлов. Электронное строение металлов, изоляторов и полупроводников.
191. Кристаллическое строение металлов.
192. Добывание металлов из руд.
193. Получение металлов высокой чистоты.
194. Сплавы.
195. Диаграммы состояния металлических систем.
196. Коррозия металлов.
Глава XVII. ПЕРВАЯ ГРУППА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ
197. Щелочные металлы в природе.
198. Натрий (Natrium).
199. Калий (Kalium).
ПОДГРУППА МЕДИ
200. Медь. (Cuprum).
201. Серебро (Argentum).
202. Золото (Aurum).
Глава XVIII. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ
203. Основные положения координационной теории.
204. Основные типы и номенклатура комплексных соединений.
205. Пространственное строение и изомерия комплексных соединений.
206. Природа химической связи в комплексных соединениях.
207. Диссоциация комплексных соединений в растворах.
208. Влияние координации на свойства лигандов и центрального атома.
Глава XIX. ВТОРАЯ ГРУППА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ
209. Бериллий (Beryllium).
210. Магний (Magnesium).
211. Кальций (Calcium).
212. Жесткость природных вод и ее устранение.
213. Стронций (Strontium). Барий (Barium).
214. Цинк (Zincum).
215. Кадмий (Cadmium).
216. Ртуть (Hydrargyrum).
Глава XX. ТРЕТЬЯ ГРУППА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ
217. Бор (Borum).
218. Алюминий (Aluminium).
219. Галлий (Gallium). Иидий (Indium). Таллий (Thallium).
ПОБОЧНАЯ ПОДГРУППА ТРЕТЬЕЙ ГРУППЫ. ЛАНТАНОИДЫ. АКТИНОИДЫ
220. Подгруппа скандия.
221. Лантаноиды.
222. Актиноиды.
Глава XXI. ПОБОЧНЫЕ ПОДГРУППЫ ЧЕТВЕРТОЙ, ПЯТОЙ, ШЕСТОЙ И СЕДЬМОЙ ГРУПП
ПОДГРУППА ТИТАНА
224. Титан (Titanium).
225. Цирконий (Zirconium). Гафний (Hafnium).
ПОДГРУППА ВАНАДИЯ
226. Ванадий (Vanadium).
227. Ниобий (Niobium). Тантал (Tantalum).
ПОДГРУППА ХРОМА
228. Хром (Chromium).
229. Молибден (Mollbdenium).
230. Вольфрам (Wolfram).
ПОДГРУППА МАРГАНЦА
231. Марганец (Manganum).
232. Рений (Rhenium).
Глава XXII. ВОСЬМАЯ ГРУППА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ
233. Общая характеристика благородных газов.
234. Гелий (Helium).
235. Неон. Аргон.
ПОБОЧНАЯ ПОДГРУППА ВОСЬМОЙ ГРУППЫ
236. Железо (Ferrum).
237. Значение железа и его сплавов в технике. Развитие металлургии в СССР.
238. Физические свойства железа. Диаграмма состояния системы железо — углерод.
239. Производство чугуна и стали.
240. Термическая обработка стали.
241. Сплавы железа.
242. Химические свойства железа. Соединения железа.
243. Кобальт (Cobaltum).
244. Никель (Niccolum).
245. Общая характеристика платиновых металлов.
246. Платина (Platinum).
247. Палладий (Palladium). Иридий (Iridium).
ПРИЛОЖЕНИЕ
Некоторые единицы СИ
Множители и приставки для образования десятичных кратных и дольных единиц и их наименований
Соотношения между некоторыми внесистемными единицами и единицами СИ
Литература для углубленного изучения общей и неорганической химии

© Научная библиотека