Главная > Физика > Классическая механика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава II. ИСХОДНЫЕ ПРЕДСТАВЛЕНИЯ КЛАССИЧЕСКОЙ МЕХАНИКИ

§ 1. Введение

В начале первой главы механика была определена как наука о движении материальных объектов, происходящем в пространстве и во времени. Различные системы механики, например классическая механика и релятивистская механика, отличаются одна от другой прежде всего смыслом, который вкладывается во все использованные в этом определении термины — пространство, время, материальный объект, движение.

Любая система механики изучает движение не реальной материи со всеми ее многообразными свойствами, а идеализированных объектов, отражающих только некоторые из этих свойств. Соответственно в основе каждой системы механики лежит своя идеализированная модель мира; каждая система механики формулирует исходную аксиоматику в терминах этой модели и, опираясь на нее, строит основные законы. Разумеется, эти законы оказываются верными для реального мира лишь в той мере, в какой в пределах решаемой задачи условия реального мира достаточно хорошо описываются соответствующей идеализированной моделью.

Объектом изучения классической механики служат не явления в физических полях и не явления, связанные с элементарными частицами материи, а движения их «больших скоплений» (тел и сред) со скоростями, много меньшими скорости света. Говоря далее о материальных объектах классической механики (или просто о материальных объектах), мы будем иметь в виду «большие скопления», движущиеся подобным образом. Материальные объекты такого рода повсеместно окружают нас, и поэтому область приложения законов классической механики весьма широка. Кроме того, иные системы механики, изучающие иные явления материального мира, строятся так, чтобы их законы переходили в законы классической механики «в пределе», при переходе от их исходных моделей к исходной модели классической механики. Так, например, законы релятивистской механики переходят в законы классической механики «в пределе», т. е. при предположении, что скорости изучаемого движения малы по сравнению со скоростью света.

Идеализированная модель мира, рассматриваемая классической механикой, исходит из представлений, которые интуитивно кажутся наиболее очевидными. Выше было указано, какие предположения о свойствах пространства и времени приняты в классической механике.

Именно, в представлении классической механики пространство однородно и изотропно, время однородно, течет одинаково во всех «геометрических твердых средах» и не зависит от того, как движутся системы отсчета одна относительно другой. Модель классической механики предполагает, что материальные объекты «находятся в пространстве», как бы «погружены в него», и что течение времени не зависит от наличия в пространстве материальных объектов и особенностей их движения.

Системы отсчета, которые вводятся так, как это было подробно описано в гл. I, можно связать с материальными объектами. В связи с этим кинематическим закономерностям подчинены не только движения геометрических точек относительно системы отсчета и не только движение одной системы отсчета относительно другой, но и движение материальных объектов.

Механика интересуется не только кинематическими характеристиками движения, но и установлением законов движения, т. е. определением того, каким образом движения зависят от взаимодействия материальных объектов. В связи с этим исходные предположения и постулаты, достаточные для построения геометрической картины движения, недостаточны для определения законов механики; они должны быть дополнены предположениями, которые вместе с предположениями о пространстве, времени и способах введения систем отсчета (см. гл. I) составляют исходную аксиоматику классической механики.

<< Предыдущий параграф Следующий параграф >>
Оглавление