Главная > Схемотехника > Цветное телевидение?.. Это почти просто!
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА 4

Как ориентироваться в бесконечном разнообразии цветов, которые могут различаться цветовым тоном, насыщенностью и яркостью? Колориметрия дает различные способы классификации и «снабжения адресами» цветов. Колориметрии посвящена настоящая глава, в которой рассматриваются следующие вопросы:

Спектрограмма. Двухцветный и трехцветный способы воспроизведения цветных изображений. Роль отрицательных составляющих. Пространственное изображение. Треугольник Максвелла. Определение цветности. График цветности. Дополнительные цвета. Нулевая цветность. Изображение насыщенности и цветового тона,

НЕМНОГО О КОЛОРИМЕТРИИ

Само по себе название колориметрия не точно отражает суть дела; задача колориметрии заключается не в измерении цвета, так как, если строго придерживаться смысла слов, цвет — неизмеряемая величина: можно подобрать два идентичных цвета, но нельзя сказать, что один цвет в два или три раза больше другого! Поэтому, правильнее было бы сказать «находить адрес», нежели измерять цвет,

Наш язык отличается превеликой неточностью. Так, лишь некоторые цвета имеют собственные имена, которые хорошо знают художники (ультрамарин, желтый хром, киноварь, голландская сажа, берлинская лазурь и т. д.), но найти названия всем имеющимся в природе оттенкам невозможно. Из-за отсутствия поэтического воображения физики предпочли воспользоваться цифрами.

Анализ и синтез цветов

Для обозначения чистых или монохроматических цветов достаточно двух чисел: частота (или длина волны) и световая энергия (или световой поток, или освещенность).

Рис. 14. Примеры световых спектров: а — зеленый монохроматический свет; б — немонохроматический зеленый свет (с отдельными спектральными линиями); в — немонохроматический зеленый свет (непрерывный спектр излучения).

Иначе говоря, монохроматический цвет абсолютно точно определен, когда известны его амплитуда и место, занимаемое соответствующей ему линией в спектре.

Но обычно наблюдаемые цвета никогда не бывают монохроматическими. Они представляют собой смесь излучений с различными длинами волн; в этом случае для характеристики цвега необходимо дать частоту каждой спектральной линии; амплитуду каждой спектральной линии.

Рис. 15. Анализ света с помощью спектроскопа с призмой. Свет от источника И фокусируется на экране, в плоскости которого установлена линейка с делениями, обозначающими длины волн. Между фокусирующей свет линзой и экраном помещена разлагающая свет призма Я.

Вдоль линейки перемещается фотоэлемент Ф, соединенный с измерительным прибором А; такое устройство позволяет снять спектрограмму для каждой точки спектра анализируемого света.

Часто в природе встречаются и цвета со сплошным спектром, т. е. со спектром, в котором нет отдельных спектральных линий и все части представлены с большей или меньшей энергией.

Для характеристики такого излучения с непрерывным спектром приходится прибегать к помощи графика, на абсциссе которого откладывается частота, а на ординате — амплитуда; такой график напоминает кривую полосы пропускания усилителя (рис. 14).

Графическое изображение спектрального распределения света называется спектрограммой; для получения такой характеристики пользуются спектрографом со стеклянной призмой, через которую пропускают исследуемый световой луч, а затем в различных участках шкалы частот замеряют, например, с помощью фотоэлемента интенсивность падающего света (рис. 15). Чтобы синтезировать такой свет, нужно соответствующим образом дозировать мощность источников таких же, как и при анализе монохроматических цветов, и смешать эти исходные световые потоки (рис. 16). Если же придется иметь дело с действительно непрерывным спектром, то для синтеза такого света потребуется бесчисленное множество элементарных источников.

Рис. 16. Дозирование основных цветов, используемых в цветном телевидении для воспроизведения различных цветовых тонов. Единицы измерения на осях координат произвольные (уменьшенный масштаб). Смесь одинаковых количеств трех основных цветов дает белый «дневной свет».

Следовательно, мы должны прийти к выводу, что если анализ даже самого сложного света всегда возможен с помощью спектрографа, то синтез его спектра излучения исключительно сложен, вообще неосуществим.

Не существует метода, который позволил бы точно воспроизвести все существующие в природе цвета. Приходится довольствоваться приближенными решениями. Следовательно, любой метод воспроизведения цветов всегда имеет определенные пределы; есть цвета, которыми приходится жертвовать, но во всех случаях необходимо иметь возможность воспроизводить всю шкалу серых тонов от черного до белого.

Если анализировать подлежащий воспроизведению окрашенный световой поток только в нескольких точках спектра, которые называют основными, или первичными, цветами, то сами собой напрашиваются следующие выводы:

1. Смесь взятых в одинаковой пропорции всех первичных цветов должна приводить к бесконечности, т. е.. давать нейтральный серый, белый или черный тон.

2. Чем больше количество первичных цветов, тем большее количество цветовых оттенков воспроизводится в цветном изображении.

<< Предыдущий параграф Следующий параграф >>
Оглавление