Главная > Схемотехника > Радио и телевидение?.. Это очень просто!
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

КОММЕНТАРИЙ ПРОФЕССОРА РАДИОЛЯ

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ТРАНЗИСТОРОВ

Как делают транзисторы разных типов?.. Каким образом очищают полупроводники и придают им монокристаллическую структуру?.. Какие способы позволяют ввести в полупроводник примеси положительного и отрицательного типов?.. Как в заводских условиях производят обычные транзисторы, мезатранзисторы и планарные?.. Какие сложные дилеммы ставит форма базы в транзисторах для усиления ВЧ?.. Все эти вопросы рассматриваются здесь профессором Радиолем.

Я с интересом прослушал вашу беседу о транзисторах и с удовлетворением отмечаю, что Любознайкин объяснил тебе все основные понятия, относящиеся к этим активным компонентам, которые за немногие годы успешно заменили вакуумные лампы в большинстве видов электронной аппаратуры.

Ты хорошо понял, Незнайкин, что слабые переменные токи, приложенные между базой и эмиттером, определяют ток базы, который в свою очередь вызывает ток коллектора. Можно сказать, что коэффициент усиления транзистора определяется отношением изменения тока коллектора к вызвавшему его изменению тока базы.

Очистка полупроводников

Я думаю, что ты хотел бы знать, какие типы транзисторов существуют и как их делают. Поэтому я попытаюсь описать тебе основные характеристики транзисторов и технологию их изготовления.

Транзисторы изготовляют из германия или кремния, причем в начале производственного цикла нужно иметь очень чистый полупроводник, обладающий безукоризненной кристаллической структурой.

Для устранения примесей применяют метод нагрева, носящий название зонной плавки. Полупроводниковый стержень кладут в кварцевый тигель и нагревают до тех пор, пока узкая зона стержня не расплавится. Затем эту расплавленную зону медленно передвигают от одного конца полупроводникового стержня к другому. Что здесь происходит? Примеси стремятся остаться в расплавленной части. Перемещая эту зону от одного конца стержня к другому, мы собираем примеси в одном конце и хорошо очищаем от них остальную часть стержня. После этого конец стержня, в котором собрались примеси, отрезают, а в хорошо очищенной части остается не более одного атома примесей на сто миллионов атомов полупроводника.

Высокочастотный нагрев

Ты, может быть, хочешь знать, как удается нагреть полупроводник узкой зоной, в которой температура достигает при очистке германия и при очистке кремния? В этом случае на помощь призывают электронику. Расплавляемую зону вместе с тиглем помещают в катушку, по которой протекает сильный ток высокой частоты. Этот ток наводит в массе полупроводника токи, которые сильно его разогревают. Катушку медленно перемещают вдоль тигля, что вызывает соответствующее перемещение расплавленной зоны (рис. 132).

Нагрев магнитным полем, наведенным токами высокой частоты и в свою очередь порождающим токи в массе полупроводника, координально отличается от нагрева спомощью пламени.

Нагрев пламенем повышает температуру поверхности тела, а уже с поверхности благодаря тепловой проводимости калорий проникают в глубь тела. При высокочастотном же нагреве тепло сразу охватывает всю массу нагреваемого тела.

Добавлю, что этот способ можно использовать и для нагрева диэлектриков, но тогда в нагреваемом теле создают электрическое (а не магнитное) поле. Для этого нагреваемое тело помещают между обкладками конденсатора, к которому прилагают напряжение ВЧ. Этот метод используют в медицине, где он называется высокочастотной диатермией.

Рис. 132. Очистка полупроводника методом зонной плавки.

Рис. 133. Расположение трех элементов, образующих транзистор.

Получение монокристалла

Вернемся, однако, к полупроводникам. Теперь, когда они хорошо очищены, им нужно придать безукоризненную кристаллическую структуру. Дело в том, что обычно полупроводник состоит из большого количества беспорядочно расположенных кристаллов. Такое скопище кристаллов надлежит превратить в один монокристалл с исключительно однородной кристаллической структурой во всей массе.

Для этого весь полупроводник нужно вновь расплавить; эту операцию также выполняют с помощью токов ВЧ, протекающих по катушке. В расплав вводят крошечный кристаллик, служащий затравкой для безупречной кристаллизации всей массы, и необходимое количество примесей типа n или p в зависимости от типа будущих транзисторов.

После охлаждения получают монокристалл, обладающий массой несколько килограммов. Затем его предстоит разрезать на большое количество маленьких кусочков, каждый из которых впоследствии будет превращен в транзистор. За исключением заготовок для транзисторов большой мощности эти кусочки имеют примерно 2 мм в длину и в ширину и несколько десятых долей миллиметра в толщину.

Сплавление

Вот мы и имеем заготовки для базы. Как из них сделать транзисторы? Ты без труда догадываешься, что для этого по обе стороны базы нужно иметь примеси типа, противоположного тому, какой содержит база.

Для выполнения этой задачи сущесгвует несколько способов. Если база сделана из германия типа p, то по обе стороны ее можно наложить крохотные таблетки из индия, предсгавляющего собой примесь типа n. Нагреем все это до температуры которой индий начинает плавиться; германий маний же, как я тебе уже говорил, обращается в жидкость лишь при нагревании до 940°С.

Атомы индия вкрапляются в германий; проникновение это облегчается тепловым движением.

Таким образом, с одной стороны базы образуется эмиттер, а с другой — коллектор (рис. 133). Последний должен иметь больший, чем эмиттер, объем, так как токи рассеивают на нем большую мощность. Само собой разумеется, что к каждому из этих трех электродов необходимо припаять проволочный вывод.

Диффузия и электролиз

Только что описанный мною способ формирования эмиттера и коллектора используется при производстве Сплавных транзисторов. Но эмиттер и коллектор можно также создать методом диффузии. Для этого полупроводник нагревают до температуры, близкой к точке плавления, и помещают его в атмосферу нейтрального газа, содержащую пары примеси, предназначенной для формирования эмиттера и коллектора. Атомы примеси легко проникают в полупроводник. В зависимости от дозировки паров примеси и продолжительности операции глубина проникновения может быть большей или меньшей. Это и определяет толщину базы.

Метод диффузии очень хорошо подходит для производства мощных транзисторов, так как он позволяет вводить примеси на больших площадях — таким образом можно сформировать эмиттер и коллектор необходимых размеров, достаточных для прохождения относительно больших токов.

Методу диффузии аналогичен электролитический метод, при котором полупроводник подвергают воздействию струек жидкости, содержащей примесь противоположного типа.

Как видишь, для производства транзисторов используют вещества в твердом состоянии — сплавление, в жидком — электролиз и в газообразном — диффузия.

Созданный одним из описанных методов транзистор помещают в герметичный и непрозрачный корпус, чтобы свет не вызывал в полупроводнике фотоэлектрического эффекта. В корпусе создают вакуум или заполняют его нейтральным газом, например азотом, чтобы предотвратить окисление германия или кремния кислородом воздуха. Корпуса для мощных транзисторов делают с таким расчетом, чтобы они могли рассеять тепло и тем самым предотвратить чрезмерный нагрев полупроводников. Такой корпус представляет собой теплоотводящий радиатор, он имеет большие размеры.

Высокие частоты ставят проблемы

К высокочастотному транзистору предъявляются требования в отношении толщины базы.

Если ее толщина очень мала, то между эмиттером и коллектором образуется относительно высокая емкость. Тогда токи ВЧ, вместо того чтобы проходить через два перехода, проходят непосредственно от эмиттера к коллектору, которые представляют собой своеобразные обкладки конденсатора.

Следует ли для снижения этой нежелательной емкости увеличить толщину базы? Ты, Незнайкин, несомненно, собираешься предложить это решение. Давай посмотрим, насколько оно рационально.

Увеличив расстояние, разделяющее эмиттер и коллектор, ты заставишь электроны проделывать между двумя переходами более длинный путь. Однако в полупроводнике скорость перемещения электронов и дырок довольно низкая: около . Предположим, что толщина базы составляет ОД мм. Для прохождения этой более чем короткой дистанции электронам потребуется 2,5 мкс.

Это равно длительности одного полупериода тока с частотой , соответствующей волне длиной . Как видишь, при такой толщине базы можно усиливать лишь токи, соответствующие длинным волнам.

Вот почему в ВЧ транзисторах толщину базы необходимо сделать значительно меньшей. При толщине базы 0,001 мм можно усиливать волны длиной до , а для приема дециметровых волн, на которых, в частности, ведутся телевизионные передачи, база должна быть еще тоньше.

Как видишь, здесь мы сталкиваемся с двумя противоречивыми требованиями: чтобы емкость эмиттер — коллектор не была слишком большой, нужно увеличить толщину базы, а чтобы электроны проходили через базу достаточно быстро, ее нужно сделать как можно тоньше.

Решения проблемы

Как же выйти из этой дилеммы? Очень просто, снизить емкость не путем сокращения расстояния между двумя обкладками, в роли которых здесь выступают эмиттер и коллектор, а путем предельно возможного уменьшения их площадей на переходах.

Рис. 134. Электролитическая обработка с помощью струек жидкости.

Рис. 135. Транзистор, в котором между базой и коллектором имеется зона из полупроводника с собственной проводимостью, улучшающая усиление на высоких частотах.

Для этой цели примеси вводят таким образом, чтобы эмиттер и коллектор имели форму конусов, вершины которых обращены в сторону базы. Такой результат достигается, в частности, при обработке обеих сторон полупроводниковой пластинки струйками жидкости, которая под воздействием напряжения вызывает электролиз и тем самым постепенно вырывает атомы, создавая в полупроводнике настоящие кратеры. Когда донышки этих углублений оказываются достаточно близко друг от друга, изменяют направление напряжения, а в жидкость добавляют достаточное количество примесей, которые с помощью электролиза вводят в углубления, образующие эмиттер и коллектор (рис. 134).

Существует категория ВЧ транзисторов, в которых обращенный к эмиттеру слой базы содержит повышенное количество примесей, что повышает скорость электронов и тем самым позволяет усиливать более высокие частоты. Такие транзисторы называют дрейфовыми; они позволяют усиливать дециметровые волны.

Можно идти дальше в этом направлении, разместив между базой и коллектором то, что называют зоной с собственной проводимостью (рис. 135). Она представляет собой слой очень чистого германия или кремния и поэтому обладает посредственной проводимостью. Эта зона отделяет очень тонкую базу от коллектора, что уменьшает емкость между эмиттером и коллектором и позволяет усиливать очень высокие частоты.

Транзисторы с мезаструктурой

Еще один метод служит для изготовления транзисторов, способных работать на частотах несколько тысяч мегагерц, благодаря чему они, в частности, применяются во входных схемах телевизоров.

Для изготовления таких транзисторов берут пластину германия типа p, которая будет служить коллектором. На нижнюю сторону пластины прочно припаивают полоску золота — будущий вывод. Верхнюю сторону пластины подвергают воздействиям паров сурьмы. Эта примесь типа n, плотность которой у поверхности выше, образует базу. Затем на этой же стороне пластины методом диффузии вводят примесь типа p (обычно алюминий), которая формирует эмиттер. Эту диффузию производят через решетку, в результате чего алюминий осаждается на поверхности узкими полосами (рис. 136, а).

После завершения этих операций на поверхность наносят крохотные капельки воска, каждая из которых одной стороной прикрывает участок полупроводника типа p — будущий эмиттер, а другой своей частью — участок типа n — будущую базу (рис. 136, б).

Рис. 136. Последовательные этапы изготовления мезатранзистора: а — диффузия через решетку примеси типа p; б — нанесение капелек воска на поверхности, образующие эмиттер и базу; в — обработка кислотой и разделение пластины на отдельные транзисторы.

Рис. 137. Этапы изготовления транзистора по планарной технологии: а — на эпитаксиальный слой наносят изолирующий слой двуокиси кремния; б — в изолирующем слое создают «окно», через которое методом диффузии вводят примесь типа p; в — после нанесения нового изолирующего слоя в нем создают «окно» меньших, чем первое, размеров и через него вводят примесь типа n; г — для доступа к зонам базы и эмиттера вскрывают отверстия, заполняемые металлом, к которому затем припаивают выводы; д — подложку укрепляют на металлической пластинке, которая служит выводом коллектора.

Затем всю пластину обрабатывают кислотой, которая стравливает все участки эмиттеров и баз, за исключением защищенных воском. Теперь остается лишь разрезать пластину на столько транзисторов, сколько имеется эмиттеров и баз, образующих на коллекторе небольшие своеобразные горки с плоской вершиной (рис. 136, в). Транзисторы с такой структурой стали называть меза, потому что в Южной Америке этим словом называют гору с плоской вершиной.

Эпитаксиальный слой

Спустимся теперь с этой горы на равнину. Под этим я подразумеваю планарную технологию изготовления транзисторов, получившую очень широкое распространение, так как она позволяет подготовить на одном монокристалле тысячи штук транзисторов за один технологический цикл. Эти транзисторы позволяют также усиливать высокие частоты и получать значительные мощности.

Чаще всего такие транзисторы формируют на эпитаксиальном слое полупроводника. Что же это такое?

Коллектор должен иметь небольшое удельное электрическое сопротивление, чтобы легко пропускать ток. Следовательно, его желательно делать из полупроводника с большим содержанием примесей. База и эмиттер, наоборот, должны иметь значительно меньше примесей.

Для создания необходимой разницы богатый примесями полупроводник покрывают тонким эпитаксиальным слоем. Для этого полупроводник, например кремний, нагревают в атмосфере водорода до температуры примерно на сто градусов ниже точки его плавления. Затем температуру слегка понижают и одновременно вводят полупроводник в тетрахлорид кремния. Последний разлагается, и на поверхности полупроводника осаждается эпитаксиальный слой, состоящий из атомов кремния, расположенных в идеальном порядке кристаллической решетки. Толщина этого слоя составляет сотую долю миллиметра, а его высокая чистота определяет высокое удельное электрическое сопротивление.

Изготовление транзисторов по планарной технологии

Представим себе, что мы имеем пластину кремния, покрытую эпитаксиальным слоем. Для начала нанесем на эпитаксиальный слой изолирующий слой двуокиси кремния (рис. 137). Затем, воздействуя соответствующим химическим составом, вскроем в изолирующем слое отверстие, через которое введем в эпитаксиальный слой методом диффузии примесь типа p, например бор; этот участок с примесями будет служить базой будущего транзистора.

Вновь покроем всю пластину изолирующим слоем двуокиси кремния и повторным химическим травлением вскроем в центре небольшое отверстие. Через это отверстие методом диффузии введем примесь типа n, например фосфор. Таким образом создают эмиттер.

Еще раз покроем всю пластину изолирующим слоем двуокиси кремния и затем вскроем в этом слое два отверстия: одно над эмиттером, а другое, расположенное в самом центре, над базой. Через эти отверстия напылением алюминия или золота создадим выводы эмиттера и базы. Что же касается вывода коллектора, то его изготовление не вызывает сложности — достаточно укрепить проводящую пластинку на нижней стороне коллектора.

Ты, Незнайкин, несомненно, заметишь, что у выполненного таким образом транзистора края переходов не имеют контакта с окружающей атмосферой; они защищены слоем двуокиси кремния, что полностью исключает возможность порчи транзистора. Двуокись кремния больше известна под названием кварца.

При желании повысить мощность планарного транзистора в принципе следует увеличивать площадь перехода эмиттер — база; для этого можно также увеличить площадь контакта между этийи двумя зонами, сделав эмиттер не в виде маленького круга, а в форме звезды или замкнутой ломаной линии.

Использование светочувствительных пленок

Узнав из моих объяснений о большом количестве операций, необходимых для производства транзистора по планарной технологии, ты, Незнайкин, несомненно, думаешь, что его себестоимость должна быть очень высокой. Поэтому я спешу успокоить тебя.

За один прием изготовляют несколько десятков или даже сотен транзисторов. В производстве применяют фотолитографические методы, еще шире используемые при изготовлении интегральных схем, о которых мы поговорим в другой раз.

Запомни, что для вскрытия крохотных отверстий («окон») всю поверхность сначала покрывают светочувствительной пленкой, которая под воздействием света становится твердой и устойчивой к растворителю, используемому на следующем этапе. Таким образом, подвергшиеся засветке участки поверхности оказываются защищенными своеобразным лаком, в который превратилась отвердевшая пленка.

Как я надеюсь, ты догадался, что на пленку проецируют световые изображения участков эпитаксиального слоя, которые не должны подвергаться химической обработке. Обычно световая проекция осуществляется через объективы, позволяющие уменьшать проецируемое изображение, что способствует микроминиатюризации...

Я мог бы рассказать тебе и о других транзисторах, например полевых. Но мне не хочется утомлять тебя. Можешь выключить магнитофон.

<< Предыдущий параграф Следующий параграф >>
Оглавление