Главная > Схемотехника > Радио и телевидение?.. Это очень просто!
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

БЕСЕДА ВТОРАЯ. ЭЛЕКТРОНЫ НА ПРОГУЛКЕ

Обладая теперь знаниями о строении вещества, Незнайкин без труда усвоит основные понятия, связанные сэлектрическим током, источниками электрической энергии, установит соотношение между силой тока, напряжением и сопротивлением, а также зависимость сопротивления от материала и размера проводника.

От бесконечно большого к бесконечно малому

Любознайкин. — Что ты думаешь, Незнайкин, о записанном на пленку монологе моего дядюшки Радиоля, который я тебе только что дал послушать?

Незнайкин. — На меня большое впечатление произвела аналогия между микромиром и макромиром. Атом как бы представляет собой эквивалент солнечной системы. В этих условиях молекула, по моему мнению, представляет собой эквивалент созвездия.

Л. — Можно даже пойти дальше и предположить, что Вселенная, состоящая из совокупности созвездий, собранных в галактике, представляет собою мир, расположенный в Сверхвселенной.

Н. — Ну хорошо, у меня возникло желание высказать гипотезу. Ты только что набросал картину того, что можно было бы назвать «макро-макромиром», а я хотел бы показать «микро-микромир». Кто знает, не представляет ли каждый электрон настоящую планету, состоящую из бесконечно малых частиц, которые в свою очередь...

Хождение электронов

Л. — Позволь мне остановить тебя, Незнайкин. Вместо высказывания стольких идей, которые, может быть, и не лишены основания, нам лучше приступить к изучению электричества. Благодаря объяснениям моего дядюшки ты уже знаешь, при каких условиях атом может быть положительным или отрицательным. Недостаток электронов в первом случае и их избыток во втором нарушают равновесие атома. Предположи теперь, что у тебя есть проволочка-проводник...

Н. — Ты хочешь сказать, проволочка из вещества, атомы которого имеют на поверхностном слое меньше четырех электронов?

Л. — Разумеется. Это может быть, например, медная проволочка. Предположим, что на одном ее конце мы сделали атомы положительными, а на другом — отрицательными. Что тогда произойдет?

Н. — Природа любит равновесие. Поэтому я предполагаю, что избыточные электроны с отрицательного конца устремятся к другому, где их не хватает, так как этот конец проволочки положительный.

Л. — Совершенно верно. В действительности движения электронов более сложные. Избыточные электроны с одного конца не пробегают вдоль всего проводника до его другого конца. Дело обстоит иначе. Положительные атомы на положительном конце проводника притягивают электроны от соседних с ними атомов. Последние становятся положительными и в свою очередь притягивают электроны с расположенных дальше атомов. И движение продолжается таким образом до тех пор, пока избыточные электроны с отрицательного конца не будут притянуты соседними с ними атомами.

Н. — Если я правильно понял, это то, что называется электрическим током. Но, если принимать во внимание сложность описанного гобою процесса, скорость его должна быть достаточно низкой.

Л. — Мой друг, ты ошибаешься. Эта скорость может достигать скорости света. Но необходимо четко различать индивидуальную скорость электронов, перемещающихся от одного атома к другому, и скорость распространения совокупности электронов.

Когда вереница автомобилей стоит перед красным светом светофора и когда загорается зеленый свет, каждая из машин трогается с места медленно. Но если все водители реагируют мгновенно, все машины трогаются с места, как только светофор переключится на зеленый. В этом случае момент общего старта определяется временем, за которое свет дойдет до глаз каждого шофера. Это означает, что рывки распространяются по цепочке со скоростью света, т. е. со скоростью . Электрический ток тоже распространяется со скоростью, близкой к скорости света.

Источники напряжения

Н. - Но как только равновесие между двумя концами проводника восстановится, электрический ток прекратится?

Л. — Он будет продолжать свое движение, если мы будем поддерживать отсутствие равновесия, которое называют разностъю электрических потенциалов. А чтобы создавать разность потенциалов или, как говорят, напряжение, можно использовать много различных способов. На практике все формы энергии могут преобразовываться в электрическую. Так, например, электрическая энергия возникает при нагревании термоэлектрической нары или при освещении фотоэлектрического элемента.

Ты можешь легко превратить химическую энергию в электрическую. Опусти в раствор серной кислоты стержень из меди и стержень из цинка. Сразу же химические реакции сделают цинк отрицательным относительно меди. Соедини проволочкой выступающие из раствора концы этих стержней, и по ней от цннка к меди погечег электрический ток.

Н. — Не это ли называют электрическим элементом?

Л. — Да, это самая простая модель элемента (рис. 8). Между двумя стержнями устанавливается напряжение примерно 1,5 В. Разность потенциалов измеряется в вольтах (В). Если требуется более высокое напряжение, можно включить несколько элементов последовательно, т. е. соединить положительный полюс одного элемента с отрицательным полюсом другого.

Н. — Я предполагаю, что полюс обозначает здесь каждый из выводов элемента. Очень возможно, что при таком последовательном включении напряжения складываются. Я догадываюсь, что таким образом создают батареи, используемые для питания радиоприемников.

Л. — Браво, Незнайкин! Твоя интуиция тебя не обманула. Действительно, используемые нами батареи состоят из нескольких последовательно соединенных элементов.

Условность и истина

Н. — Однако здесь кое-что меня удивляет. По твоим словам, электроны идут от отрицательного полюса к положительному. А я от компетентных людей слышал, что электрический ток идет от положительного полюса к отрицательному. Где же истина?

Л. — То, что ты слышал, — условное направление электрического тока, его приняли в то далекое время, когда еще не знали о существовании электронов и, следовательно, об истинном направлении их движения. Поэтому всегда учитывай истинное направление тока, который вне источника напряжения идет от отрицательного полюса к положительному (рис. 9).

Н. — Почему ты акцентируешь мое внимание на выражении «вне источника напряжения»?

Л. — Потому что в самом элементе по раствору серной кислоты электроны перемещаются от медного стержня к цинковому. Ты видишь здесь полностью замкнутый путь, по которому электроны проходят полный круг.

Рис. 8. Электрический элемент и его условное обозначение. Стрелками показано направление потока электронов, идущего от отрицательного полюса (цинк) к положительному (медь).

Рис. 9. Направление движения электронов в электрическом элементе и вне его.

Незнайкин формулирует закон Ома

Н. — А какое количество электронов совершает эту прогулку?

Л. — Это количество зависит от двух факторов: от напряжения источника тока и от электрического сопротивления цепи. Количество электронов, проходящее в секунду, называется силой тока. Она измеряется в амперах (А).

Н. — Если я правильно понял, сила тока пропорциональна напряжению и обратно пропорциональна сопротивлению.

Л. — Браво, дорогой друг! Ты превосходно сформулировал закон Ома, этот основной закон всей науки об электричестве. Действительно, для исчисления силы тока I достаточно разделить напряжение U на сопротивление R. Электрическое сопротивление выражается в омах (Ом). 1 Ом — это сопротивление проводника, который при напряжении 1 В пропускает ток силой 1 А.

Н. — Я думаю, что закон Ома можно выразить следующей простой математической формулой:

т. е. сила тока равна напряжению, деленному на сопротивление. Мне хотелось бы понять, от чего зависит сопротивление проводника.

Сопротивление и удельное сопротивление

Л. — Сопротивление проводника зависит от его материала и размеров. Каждое вещество характеризуется так называемым удельным электрическим сопротивлением. Это сопротивление, которым обладает кубический сантиметр вещества при включении его в цепь двумя противоположными сторонами. Самое низкое удельное сопротивление из наиболее широко применяемых проводников у серебра: оно равно 0,000001492 Ом см. Сопротивление меди чуть больше и составттяет 0,000001584 Ом см. Но у стали оно в 6, а у свинца — в 15 раз больше, чем у серебра.

Теперь ты можешь понять, почему чаще всего применяют проводники из меди — этот металл намного дешевле серебра.

Н. — Я предполагаю, что у диэлектриков удельное сопротивление намного больше.

Л. — Разумеется. Удельное сопротивление стекла, пластмасс и резины — очень высокое.

Н. — Судя по тому, что ты сейчас сказал, сопротивление проводника зависит не только от его материала, т. е. от его удельного сопротивления, но и от его формы. Не ошибаюсь ли я, предполагая, что чем длиннее проводник, тем больше его сопротивление?

Л. — Ты абсолютно прав. Сопротивление R пропорционально длине проводника L. Оно также зависит от его поперечною сечения S. Не догадываешься ли ты, каково это отношение?

Н. — Несомненно, чем больше сечение проводника, тем легче проходят через него электроны. Следовательно, R должно быть обратно пропорционально S.

Л. — Верно. А теперь, если мы обозначим удельное сопротивление греческой буквой (ро), сможешь ли ты составить формулу, позволяющую вычислить сопротивление проводника, имеющего длину L и сечение S?

Н. — Это не сложно. Достаточно умножить удельное сопротивление на длину и разделить на сечение:

При этом размеры должны быть выражены в сантиметрах.

Л. — Очень хорошо, Незнайкин. Применяя эту формулу, ты рассчитаешь, что медный провод с сечением при длине, равной протяженности земного экватора, составляющей 40 000 км, имеет сопротивление больше 600 000 Ом. Однако это составляет всего лишь 60 и только 0,06 Ом .

Н. — Если куском такого провода длиной в мы соединим оба полюса нашего цинково-медного элемента напряжением 1,5 В, то сила тока по закону Ома будет равна:

Л. — Это чрезвычайно большая величина для такого источника тока, как наш элемент. В таком случае говорят, что источник практически замкнут накоротко, Такое короткое замыкание может разрушить элемент.

Н. — Глубоко огорчен, дорогой Любознайкин. Я чувствую, что сопротивление моего мозга резко упало из-за обилия новых сведений, которые ты мне сообщил. Поэтому во избежание короткого замыкания в моей черепной коробке я предлагаю тебе отложить продолжение беседы до нашей следующей встречи.

<< Предыдущий параграф Следующий параграф >>
Оглавление