Главная > Схемотехника > Искусство схемотехники, Т.1
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ПРОЕКТИРОВАНИЕ ТЕПЛООТВОДА МОЩНЫХ СХЕМ

6.04. Мощные транзисторы и отвод тепла

Часто необходимо, как мы видели в приведенных выше схемах, использовать мощные транзисторы или другие сильноточные устройства, такие, как КУВ или силовые выпрямители, рассеивающие мощности во много ватт. Недорогой и очень распространенный мощный транзистор , правильно смонтированный, рассеивает мощность до . Все мощные устройства выпускаются в корпусах, обеспечивающих тепловой контакт между их металлической поверхностью и внешним радиатором. Во многих случаях металлическая поверхность устройства связана электрически с одним из выводов (например, у мощного транзистора она всегда связана с коллектором).

Таблица 6.1. Мощные биполярные транзисторы

(см. оригинал)

В принципе задача теплоотвода - удержать переходы транзисторов или других устройств при температуре, не превышающей указанной для них максимальной рабочей температуры. Для кремниевых транзисторов в металлических корпусах максимальная температура переходов обычно равна , а для транзисторов в пластмассовых корпусах равна . В табл. 6.1 приведены некоторые часто применяемые типы мощных транзисторов и указаны их температурные параметры. Зная эти параметры, проектировать теплоотвод просто: зная мощность, которую прибор будет рассеивать в данной схеме, подсчитываем температуру переходов с учетом теплопроводности транзистора, радиатора и максимальной рабочей температуры окружающей транзистор среды. Затем выбираем такой радиатор, чтобы температура переходов была намного ниже указанной изготовителем максимальной. Здесь разумно перестраховаться, так как при температурах, близких к максимальной, транзистор быстро выходит из строя.

Тепловое сопротивление.

При расчете радиатора используют тепловое сопротивление 0, которое равняется отношению величины перепада температур в градусах к передаваемой мощности. Если теплопередача происходит только путем теплопроводности, то тепловое сопротивление - величина постоянная, не зависящая от температуры, а зависящая только от устройства теплового контакта. Для последовательного ряда тепловых контактов общее температурное сопротивление равно сумме тепловых сопротивлений отдельных соединений. Таким образом, для транзистора, смонтированного на радиаторе, общее тепловое сопротивление передаче тепла от -перехода на внешнюю среду равно сумме тепловых сопротивлений переход-корпус , соединения корпус-радиатор и перехода радиатор-среда . Таким образом, температура -перехода будет равна

где Р-рассеиваемая мощность.

Рассмотрим пример. Приведенная ранее схема источника питания с внешним проходным транзистором имеет максимум рассеиваемой на транзисторе мощности при нестабилизированном входном напряжении падения напряжения, 2 А). Предположим, что эта схема должна работать при окружающей температуре так уж невероятно для компактно расположенного электронного постараемся удержать температуру переходов ниже , т. е. намного ниже, чем указанные изготовителем . Тепловое сопротивление от перехода к корпусу равно . Мощный транзистор в корпусе , смонтированный со специальной прокладкой, обеспечивающей электрическую изоляцию и тепловой контакт, имеет тепловое сопротивление от корпуса к радиатору порядка . И наконец, радиатор фирмы Wakefield, модель 641 (рис. 6.6), имеет тепловое сопротивление на границе с внешней средой порядка . Поэтому общее тепловое сопротивление между -переходом и внешней средой будет равно . При рассеиваемой мощности температура перехода будет на выше температуры окружающей среды, т. е. будет равна (при максимальной внешней температуре для данного случая). Итак, выбранный радиатор пригоден, а если необходимо сэкономить пространство, то можно выбрать и несколько меньший.

Замечания о радиаторах.

1. В схемах, где рассеиваются большие мощности, например несколько сотен ватт, может понадобиться принудительное воздушное охлаждение. Для этого выпускаются большие радиаторы, предназначенные для работы с вентиляторами и имеющие очень низкое тепловое сопротивление от радиатора к внешней среде от 0,05 до .

2. Если транзистор должен быть электрически изолирован от радиатора, как это обычно и необходимо, особенно если несколько транзисторов установлено на одном радиаторе, то используют тонкие изолирующие прокладки между транзисторами и радиаторами, а также изолирующие вкладыши для монтажных винтов.

Прокладки выпускаются под стандартные транзисторные корпусы и делаются из слюды, изолированного алюминия и двуокиси бериллия . При использовании теплопроводящей смазки они создают дополнительное тепловое сопротивление от (бериллие-вые) до . Хорошей альтернативой классическому сочетанию прокладка из слюды плюс смазка могут служить изоляторы на основе кремнийорганических соединений без использования смазки с дисперсионным покрытием теплопроводным компаундом; обычно это нитрид бора или окись алюминия. Эти изоляторы чисты и сухи, удобны в употреблении, вам не грозит испачкать руки, одежду и электронику белым липким веществом, к тому же вы экономите уйму времени. Тепловое сопротивление этих изоляторов составляет , т. е. вполне сравнимое с величинами «грязного» метода. Фирма Bergquist называет свою продукцию , продукция SPC известна под названием Thermalloy называет свою .

Рис. 6.6. Радиаторы для мощных транзисторов. Фирмы-изготовители: I-IERC, , W-Wakefield. (размеры даны в дюймах, мм).

Мы в своей работе с успехом используем все эти изоляторы.

3. Малые радиаторы выпускаются в виде простых насадок на малогабаритные корпусы транзисторов (подобные стандартному ). В случае малой рассеиваемой мощности ) этого вполне достаточно и не надо мучиться, монтируя транзистор куда-то на радиатор, а потом тащить от него провода обратно к схеме (пример см. на рис. 6.6). Кроме того, существуют различные типы малых радиаторов для работы с мощными ИМС в пластмассовых корпусах (многие стабилизаторы, а также мощные транзисторы имеют такие корпуса), которые монтируются прямо на плату под корпус ИМС. Это очень удобно в схемах, где рассеивается мощность не больше нескольких ватт (пример см. также на рис. 6.6).

4. Иногда удобно монтировать мощный транзистор прямо на шасси или корпус прибора. В этом случае лучше использовать консервативный метод проектирования (корпус должен оставаться холодным), так как нагретый корпус нагреет и другие элементы схемы и сократит их сроки службы.

5. Если транзистор смонтирован на радиаторе без изоляции, то надо изолировать радиатор от шасси. Применение изолирующих прокладок рекомендуется всегда (например, модель Wakefield 103), если, конечно, корпус транзистора не заземлен по идее. Если транзистор изолирован от радиатора, то радиатор можно закрепить прямо на шасси. Но если транзистор выступает наружу из прибора (скажем, радиатор его смонтирован на внешней стороне задней стенки), то имеет смысл изолировать этот транзистор, чтобы никто до него случайно не дотронулся и не замкнул на землю (изолировать можно, например, прокладкой Thermalloy ).

6. Тепловое сопротивление радиатор - внешняя среда обычно указывается, когда ребра радиатора установлены вертикально и обдуваются воздухом без помех. Если же радиатор установлен как-нибудь по-другому или есть препятствия на пути потока воздуха, то эффективность радиатора снижается (повышается тепловое сопротивление); лучше всего монтировать радиатор на задней стенке прибора, ставя ребро вертикально.

Упражнение 6.2. Транзистор , имеющий тепловое сопротивление переход-корпус , снабжен съемным радиатором типа IERC TXBF (см. рис. 6.6). Максимальная допустимая температура перехода . Какая мощность может рассеиваться такой конструкцией при внешней температуре Как эта мощность уменьшается с каждым градусом увеличения температуры окружающей среды?

<< Предыдущий параграф Следующий параграф >>
Оглавление