Главная > Схемотехника > Искусство схемотехники, Т.1
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

6.06. Защита от больших напряжений

Как было отмечено в разд. 6.03, полезно на выходе стабилизированного источника питания иметь какую-нибудь защиту от превышения номинального напряжения. Рассмотрим, например, источник питания , питающий большую цифровую систему (мы встретим много таких примеров после гл. 7). Входное напряжение стабилизатора может быть от до . Если проходной транзистор выйдет из строя и коллектор замкнется на эмиттер (обычная неисправность), то все нестабилизированное напряжение будет приложено к питаемой схеме и результаты будут разрушительны. Хотя предохранитель, возможно, и расплавится, но вообще-то предохранитель и кремниевые элементы в схеме будут соревноваться кто быстрее выйдет из скорее всего предохранитель расплавится позже. Эта проблема особенно серьезна для логических схем ТТЛ, которым требуется питание и которые не могут выдерживать больше 7 В. Другая опасная ситуация создается при работе от «стендового» источника питания с широким диапазоном выходных напряжений, имеющего нестабилизированное входное напряжение 40 В или выше, независимо от значения выходного напряжения.

Рис. 6.8. Защита от перенапряжения.

Датчик перенапряжений на стабилитроне.

На рис. 6.8 показана известная схема защиты, которая выпускается также в виде модуля фирмами Lambda (тип ) . Ее вставляют между выходом стабилизатора и землей. Если напряжение на выходе стабилизатора превзойдет пробивное напряжение стабилитрона и прямое напряжение на диоде (для изображенной схемы - порядка 6,2 В), КУВ включится и останется в этом состоянии до тех пор, пока его анодный ток не упадет до нескольких миллиампер. Недорогой КУВ типа может отводить ток 5 А постоянно и выдерживать всплески тока до 80 А, перепад напряжения на нем в проводящем состоянии обычно равен 1 В при 5 А. Резистор 68 Ом должен обеспечить нормальный ток стабилитрона ) при включении КУВ, а конденсатор добавлен, чтобы схема защиты не срабатывала от безвредных коротких всплесков напряжения.

Описанная схема, как и все схемы защиты подобного типа, жестко устанавливает при срабатывании по напряжению на выводах источника питания напряжение «короткого замыкания» 1 В, и может быть выключена только при отключении питания.

Так как на КУВ в проводящем состоянии падает небольшое напряжение, нет проблем с перегревом самой схемы защиты, поэтому такая схема защиты надежна. Важно только, чтобы источник стабилизированного питания имел какую-нибудь токоограничивающую схему или хотя бы плавкий предохранитель на случай короткого замыкания. Могут появиться проблемы с перегревом самого стабилизатора при срабатывании схемы защиты. Если он содержит внутреннюю токоограничивающую схему, то плавкий предохранитель не сработает и источник питания так и будет сидеть на схеме защиты с низким напряжением на выходе, пока кто-нибудь этого не заметит. Здесь хорошо применить схему защиты от короткого замыкания с обратным наклоном характеристики.

С этой простой схемой защиты связано несколько вопросов, в основном по поводу выбора напряжения стабилитрона. Последние выпускаются только на определенные значения пробивного напряжения, задаваемого, вообще говоря, с большим допуском, и часто не имеют резкого излома на вольт-амперной характеристике. Вместе с тем желаемое напряжение срабатывания схемы защиты может быть задано с довольно жестким допуском. Рассмотрим источник питания 5 В, питающий цифровую логическую схему. Обычный допуск напряжения питания составляет 5-10% от номинала, таким образом напряжение срабатывания схемы защиты не может быть ниже 5,5 В. Эту цифру еще нужно увеличить из-за переходных процессов в источнике питания: при резком изменении тока нагрузки может произойти скачок напряжения - всплеск и вслед за ним затухающие пульсации. Эта проблема усугубляется, если измерительные элементы отдалены и подсоединены длинными проводами (индуктивность). Получающиеся колебания накладывают динамические помехи на уровень выходного напряжения, и схема защиты не должна срабатывать. Поэтому ее напряжение срабатывания не должно быть меньше 6 В, с другой стороны, оно не должно превосходить 7 В во избежание повреждений логических схем. И вот когда вы начнете обдумывать схему с учетом допусков стабилитронов, конкретных значений их номинальных напряжений и допусков напряжения срабатывания КУВ, то вам приходится решать хитрую задачу. В схеме рис. 6.8 напряжение срабатывания может оказаться от 5,9 до 6,6 В даже при использовании обозначенного на схеме сравнительно дорогого -ного стабилитрона.

ИС-датчик перенапряжений.

Проблемы, возникающие при построении простой схемы защиты на стабилитроне и КУВ (плохая предсказуемость и отсутствие подстройки), превосходно решаются при использовании специальной триггерной ИМС защиты, такой, например, как или . Это недорогие ИМС в удобных корпусах (-штырьковом или -вывод-ном ), напрямую управляющие КУВ и очень простые в использовании. Например, ИМС имеет регулируемые порог и время срабатывания, а также имеет вывод для сигнализации о недопустимом уменьшении напряжения питания (очень удобно для схем с микропроцессорами). ИМС содержит встроенный источник опорного напряжения, несколько компараторов и драйверов, и для построения всей схемы защиты требуется еще только два внешних резистора, КУВ и конденсатор (необязательно). Эти ИМС защиты относятся к классу схем «слежения за источником питания», куда входят такие сложные ИМС, как МАХ691, которые не только воспринимают падение напряжения, но и переключаются на батарейное питание в случае отключения питания в сети переменного тока, генерируют сигнал обратного переключения при восстановлении нормального питания и непрерывно контролируют отсутствие замыкания в схеме микропроцессора.

Модули защиты.

Зачем что-то строить, если можно это . С точки зрения разработчика самой простой схемой защиты является приспособление с двумя выводами, у которого на крышке написано «защита». Вы можете купить такие устройства у фирм Lambda или Motorola, которые предлагают серию модулей защиты от перенапряжения в нескольких диапазонах по току.

Вы только выбираете необходимые вам номинальные напряжения и ток и подсоединяете защиту на выход стабилизированного источника питания постоянного тока. Например, самые маленькие устройства такого типа, выпускаемые фирмой Lambda, рассчитаны максимум на 2 А при следующем наборе фиксированных значений напряжения: 5, 6, 12, 15, 18, 20 и 24 В. Они выпускаются в монолитном исполнении в корпусе (малый металлический корпус для мощных транзисторов) и стоит 2,5 долл. за . Монолитные ИМС фирмы Lambda на 6 А выпускаются в корпусе (большой металлический корпус для мощных транзисторов) по цене 5 долл. за штуку. Выпускаются также гибридные ИМС защиты на 12, 20 и 35 А. Вся серия (Motorola) выпускается в монолитном исполнении (только 5, 12 и 15 В, рассчитанные на номинальный ток 7,5, 15 или 35 А). Первые два номинала выпускаются в корпусе (мощный пластмассовый), последний (только на корпусе (мощный металлический). Цены неправдоподобно низкие - при покупке небольшими партиями ИМС этих трех номиналов по току стоят всего лишь по 1,96, 2,36 и 6,08 долл. соответственно. Эти схемы защиты имеют одну приятную особенность - у них высокая точность; например, -вольтовое устройство фирмы Lambda имеет точку срабатывания .

Ограничители.

Другое возможное решение вопроса защиты от перенапряжения - установка мощного стабилитрона или его аналога параллельно выходу источника питания. Это снимает вопрос о срабатывании на всплесках, так как стабилитрон немедленно перестает проводить, как только исчезает «лишнее» напряжение (не то что КУВ, у которого память, как у слона). На рис. 6.9 показана схема «активного стабилитрона». К сожалению, схема защиты на мощном стабилитроне также имеет свои недостатки. Если стабилизатор выйдет из строя, схеме защиты придется справляться с рассеянием большой мощности и она сама может выйти из строя. Это и случалось, например, с серийным источником питания для магнитного диска на напряжение 15 В и ток 4 А. Когда в нем портился проходной транзистор, на стабилитроне 16 В, рассеивалась мощность больше расчетной и он тоже выходил из строя.

Рис. 6.9. Мощный «активный» стабилитрон.

<< Предыдущий параграф Следующий параграф >>
Оглавление