Главная > Схемотехника > Искусство схемотехники, Т.1
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

2.04. Использование эмиттерных повторителей в качестве стабилизаторов напряжения

Простейшим стабилизатором напряжения служит обычный зенеровский диод-стабилитрон (рис. 2.11). Через него должен протекать некоторый ток, поэтому нужно обеспечить выполнение следующего условия:

Так как напряжение не стабилизировано, то в формулу нужно поставить наименьшее возможное значение . Это пример того, как следует проектировать схему для жестких условий работы. На практике учитывают также допуски на параметры компонентов, предельные значения напряжения в сети и т.п., стремясь предусмотреть наихудшее возможное сочетание всех значений.

Рис. 2.11. Простой стабилизатор напряжения на основе зенеровского диода.

На стабилитроне рассеивается мощность:

Для того чтобы предусмотреть работу в жестких условиях, при расчете Рстаб также следует использовать значения .

Упражнение 2.3. Разработайте стабилизированный источник напряжения для токов нагрузки величиной от 0 до входное напряжение изменяется в пределах от 20 до 25 В. В любых условиях (в том числе и в самых жестких) через стабилитрон должен протекать ток . На какую предельную мощность должен быть рассчитан стабилитрон?

Стабилизированный источник с зенеровским диодом, как правило, используют в некритичных схемах или в схемах, где потребляемый ток невелик. Ограничения такой схемы проявляются в следующем:

1. Напряжение нельзя отрегулировать или установить на заданное значение.

2. Стабилитроны имеют конечное динамическое сопротивление, а в связи с этим они не всегда достаточно сильно сглаживают пульсации входного напряжения и влияние изменения нагрузки.

Рис. 2.12. Стабилитрон в сочетании с повторителем обеспечивает увеличение выходного тока.

3. При широком диапазоне изменения токов нагрузки приходится выбирать стабилитрон с большой мощностью рассеяния, так как при малом токе нагрузки он должен рассеять на себе значительную мощность, равную максимальной мощности в нагрузке.

На рис. 2.12 представлена улучшенная схема, в которой зенеровский диод отделен от нагрузки эмиттерным повторителем. В такой схеме дела обстоят лучше. Ток стабилитрона теперь относительно независим от тока нагрузки, так как по цепи базы транзистора протекает небольшой ток и мощность, рассеиваемая на стабилитроне, значительно меньше (уменьшение в ). Резистор можно добавить в схему для того, чтобы он предохранил транзистор от выхода из строя при кратковременном коротком замыкании выхода за счет ограничения тока, и, хотя эмиттерный повторитель нормально работает и без этого резистора, его присутствие в схеме вполне обоснованно. Резистор следует выбирать так, чтобы при максимальном токе нагрузки падение напряжения на нем было меньше, чем на резисторе .

Упражнение 2.4. Разработайте источник напряжения , который имел бы такие же параметры, как источник в упражнении 2.3. Используйте в схеме стабилитрон и эмиттерный повторитель. Рассчитайте, какую мощность рассеивают транзистор и стабилитрон в наихудшем случае. Каково процентное изменение тока стабилитрона при переходе от ненагруженного состояния к нагруженному? Сравните эти результаты с результатами предыдущего упражнения.

В ряде вариантов рассмотренной схемы предусматривают меры для снижения пульсаций тока в стабилитроне (протекающего через резистор R). В частности, может быть использован источник тока для питания стабилитрона. Этот случай мы рассмотрим в разд. 2.06. Другой метод основан на использовании в цепи питания стабилитрона фильтра низких частот (рис. 2.13). Резистор R выбирают так, чтобы обеспечить необходимый ток в стабилитроне. Конденсатор С должен иметь емкость, достаточно большую для того, чтобы выполнялось условие . (В одном из вариантов этой схемы верхний резистор заменен диодом).

В дальнейшем вы познакомилось с более совершенными стабилизаторами, в которых выходное напряжение можно легко и плавно настраивать благодаря обратной связи. Вместе с тем они представляют собой гораздо лучшие источники напряжения, выходные импедансы которых измеряются в миллиомах, температурные коэффициенты в миллионных долях на и т.д.

Рис. 2.13. Снижение пульсаций в стабилитроне.

<< Предыдущий параграф Следующий параграф >>
Оглавление