Главная > Схемотехника > Искусство схемотехники, Т.1
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3.15. Необходимые предосторожности в обращении с МОП-транзисторами

Затвор МОП-транзистора изолирован от канала слоем стекла толщиной в несколько тысяч ангстрем ( нм). В результате мы имеем очень высокое сопротивление, но не имеем резистивной или полупроводниковой цепи для стока заряда статического электричества по мере его накопления. В классической ситуации вы берете МОП-транзистор (или МОП-транзисторную ИМС) в руку, подходите к схеме, вставляете устройство в разъем, включаете питание, и все это только для того, чтобы обнаружить - МОП-транзистор мертв.

Таблица 3.7. Типичные значения электростатического напряжения (по данным из справочника фирмы Motorola по мощным МОП-транзисторам)

А убили его вы сами! Вам следовало взяться другой рукой за печатную схему, прежде чем вставлять в нее устройство. Таким образом был бы снят ваш статический заряд, который зимой может достигать нескольких тысяч вольт. МОП-транзистор не любит, когда его «стукает током». Как проводник статического электричества вы представляете собой последовательное соединение конденсатора и резистора около 1,5 кОм; зимой этот конденсатор может зарядиться до и более от трения подошв о пушистый ковер (даже простое движение руки в рукаве рубашки или свитера может дать напряжение в несколько киловольт; см. табл. 3.7).

Хотя любое полупроводниковое устройство можно вывести из строя хорошей искрой, однако устройства на МОП-транзисторах особенно чувствительны к пробою, поскольку энергия, запасаемая в емкости затвор-канал, при достижении напряжения пробоя становится достаточной для того, чтобы пробить отверстие в тонком слое изоляции затвора. (Если эта искра проскакивает от вашего пальца, то ваши лишь вносят дополнительный вклад в этот процесс.) Рис. 3.76 (взятый из серии тестовых испытаний мощного МОП-транзистора на стойкость к электростатическому разряду) показывает, какого рода неприятности могут произойти. Назвать это «пробоем затвора было бы ошибкой; ближе к получаемой картине будет выразительный термин «прободение».

Рис. 3.76. Сканирующая электронная микрофотография высокого разрешения -амперного МОП-транзистора, разрушенного зарядом в , от «эквивалента человеческого тела» (1,5 кОм, включенного последовательно с емкостью ), приложенного к его затвору. (С разрешения фирмы Motorola, ).

В электронной промышленности проблема электростатического разряда стоит очень серьезно. Возможно, она является лидирующей среди причин, по которым на выходе линии сборки появляются неработоспособные полупроводниковые устройства. На данную тему написаны целые книги, и вы может с ними ознакомиться. МОП-приборы, так же как и другие чувствительные к электростатике полупроводниковые устройства (а сюда относятся почти все они; например, всего в 10 раз большее, чем МОП-транзисторы, напряжение выдерживает биполярный транзистор), можно перевозить в проводящей фольге или упаковке. Следует также быть осторожными при работе с паяльником и т. д. Лучше всего заземлять корпуса паяльников, крышки столов и т.п., а также пользоваться проводящим браслетом. Кроме того, можно использовать «антистатические» покрытие пола, обивку мебели и даже одежду (например, антистатический халат из ткани, содержащей 2% стального волокна).

Хорошая организация рабочего помещения и процесса производства включает регулировку влажности, применение ионизаторов воздуха (которые делают воздух в слабой степени электропроводным, что препятствует накоплению зарядов на предметах), а также обученный персонал. Если этого нет, то зимой степень выхода годных изделий катастрофически падает.

Как только устройство впаяно на свое место в схеме, шансы на его повреждение резко падают, тем более что многие МОП-транзисторные устройства (такие, например, как логические КМОП-устройства, но не мощные МОП-транзисторы) имеют предохранительные диоды во входных цепях затворов. Хотя цепи внутренней защиты, состоящие из резисторов и обратно включенных (иногда зенеровских) диодов, несколько ухудшают параметры, часто их все же надо применять для уменьшения риска повреждения статическим электричеством. В случае незащищенных устройств, например мощных МОП-транзисторов, устройства с малой площадью затвора (слаботочные) подвергаются наибольшей опасности повреждения, поскольку их малая входная емкость легко заряжается до высокого напряжения, когда она входит в контакт с заряженной емкостью человека . Наш собственный опыт работы с МОП-транзистором , имеющим малую площадь затвора, был настолько удручающим, что мы больше не используем его в промышленных разработках.

Рис. 3.77. а — повторитель с большим входным сопротивлением; б - видеомультиплексор на МОП-транзисторах с усилителем, компенсирующим потери на ; в - переключение сигнала с использованием диодного моста - альтернатива полевым транзисторам; г - логический переключатель для -канального высоковольтного ключа (-преобразователь уровня ТТЛ в высокое напряжение фирмы Supertex; 8 в одном корпусе).

Рис. 3.78. а - ключи; б - усилитель с коэффициентом усиления ключ; г - комплементарный инвертор на ПТ с -переходом; д - повторитель с нулевым сдвигом.

Трудно переоценить проблему повреждения затвора МОП-транзистора вследствие его пробоя статическим электричеством. К счастью, разработчики МОП-транзисторов осознают серьезность этой проблемы и отвечают на нее новыми разработками с более высоким напряжением пробоя затвор - исток. Например, фирма Motorola выпустила новую серию «ТМОП IV» с напряжением пробоя затвор-исток В.

<< Предыдущий параграф Следующий параграф >>
Оглавление