Главная > Схемотехника > Искусство схемотехники, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Кое-что еще о схемах с прерыванием

Усилитель со связью по переменному току.

Рассматривая описанные выше усилители с автоподстройкой нуля с помощью прерывателя, не спутайте этот способ с другим методом «прерывания», а именно: с традиционным узкополосным усилителем с прерывателем, в котором малый сигнал постоянного тока преобразуется («прерывается» с известной частотой) в сигнал переменного тока, усиливается усилителями переменного тока и, наконец, демодулируется путем наложения на него сигнала той же формы, что использовалась первоначально для прерывания исходного сигнала (рис. 7.21). Данная схема совершенно отлична от только что рассмотренного нами метода автоподстройки нуля с полной полосой пропускания, что особенно проявляется в ее раскачке при подходе частоты сигнала к частоте тактового генератора, составляющей обычно всего несколько сотен герц. Иногда это можно наблюдать с помощью самописца или другого низкочастотного измерительного прибора.

Рис. 7.21. Усилитель с прерывателем и связью по переменному току.

Температурные сдвиги.

При построении усилителей постоянного тока с субмикровольтными напряжениями сдвига необходимо полностью отдавать себе отчет в возможности появления температурных сдвигов, которые создают небольшие термоэлементы, образуемые соединением разнородных металлов (см. разд. 15.01).

Рис. 7.22. ИМС для внешней автоподстройки нуля.

В случае если пара таких соединений имеет разную температуру, мы получаем эффект Зеебека («термо-э. д. с.). На практике обычно имеются точки соединения проводников с различным покрытием; температурный градиент или даже небольшой поток воздуха легко может вызвать появление напряжения в несколько микровольт. Даже однотипные провода разных изготовителей могут давать термо-э. д. с. величиной , в четыре раза больше, чем паспортное значение дрейфа МАХ432! Наилучший способ исключить влияние тепловых потоков и градиентов в симметричном, насколько это возможно, расположении проводников и компонентов на печатной плате.

Внешняя настройка нуля.

Фирма National выпускает превосходный «автоподстройки нуля» (LMC669), который можно использовать как внешний нуль-усилитель, превращающий любой выбранный нами ОУ в усилитель с автоподстройкой нуля (рис. 7.22). Наиболее естественным является включение этого кристалла в инвертирующую схему, при котором он, как показано, задает на неинвертирующем входе такое напряжение, которое приводит входной сдвиг к нулю. Работает эта схема не столь хорошо, как рассмотренные ранее специально предназначенные для этих целей усилители с автоподстройкой нуля: составляет (тип.) или (макс.). Однако она позволяет нам использовать метод автоподстройки нуля с любым ОУ. Можно, например, применить его для установки нуля непрецизионного, но мощного или высокоскоростного ОУ. Представленные на схемах типы ИМС - хорошие примеры. - превосходный мощный ОУ (выходной ток 3 А, сложная встроенная в кристалл схема токовой и тепловой защиты), имеющий, однако, напряжение сдвига до 10 мВ (макс.).

Автоподстройка нуля уменьшает его примерно в 1000 раз. В свою очередь, - быстродействующий усилитель МГц, скорость нарастания составляет с напряжением сдвига (макс.), которое уменьшается здесь раз в 400. Обратите внимание на фильтрующие -цепочки как на входе, так и на выходе схемы автоподстройки нуля: они необходимы, чтобы подавить шумы прерывателя в этой (медленной) корректирующей петле, когда данный метод используется для усиления малых сигналов и с такими малошумящими устройствами, каковым является .

Измерительный усилитель.

Еще один метод «прерывания», так называемый «коммутируемый с автоподстройкой нуля» (или КАН) усилитель, первоначально был применен фирмой Intersil. В этом методе, который был воплощен в ИМС измерительного усилителя с «плавающим конденсатором», МОП-транзисторные ключи дают возможность запомнить дифференциальный входной сигнал на конденсаторе, а затем усилить его с помощью неинвертирующего усилителя, стабилизированного прерыванием (рис. 7.23). Как и у стандартного усилителя с автоподстройкой нуля, здесь также имеются обусловленные зарядовой связью выбросы с тактовой частотой, которые налагают на КАН-метод те же ограничения, которые мы видели ранее. Хотя в первом издании мы с энтузиазмом говорили о КАН-усилителях, что . представляется хороший случай коренным образом улучшить точность ОУ и технологию измерительных усилителей», однако их превзошли улучшенные схемы автоподстройки нуля, в которых сигнал всегда проходит через один усилитель.

Рис. 7.23. Дифференциальный усилитель с «плавающим конденсатором» и высоким КОСС.

Тем не менее, отдавая должное КАН-усилителю, необходимо отметить, что примененный в ИМС 7605 метод «плавающего конденсатора» имеет ряд уникальных достоинств, в том числе диапазон синфазного входного напряжения, на 0,3 В превышающий оба напряжения питания, минимальное значение КОСС 100 дБ даже при единичном усилении, а также самое малое среди всех монолитных усилителей напряжение сдвига. При использовании этих усилителей, однако, нельзя забывать, что необходима фильтрация шума на выходе, напряжение питания ограничено величиной , а полное сопротивление нагрузки должно быть высоким, поскольку полное выходное сопротивление периодически (с тактовой частотой) возрастает.

Готовый блок «плавающего конденсатора» позволяет вам самим изготовить дифференциальный усилитель с высоким КОСС. Измерительные усилители подробно рассматриваются в следующем разделе. Большинство выпускаемых в настоящее время ОУ с автоподстройкой нуля включены в таблицу прецизионных операционных усилителей (табл. 7.2).

<< Предыдущий параграф Следующий параграф >>
Оглавление