Главная > Схемотехника > Искусство схемотехники, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

10.16. Подключение к компьютеру периферийных устройств

Интерфейсы обычно изготавливаются в виде печатных плат, либо плат с накруткой (см. гл. 12), предназначенных для вставления в плоские разъемы («слоты») микрокомпьютера. Обычно в микрокомпьютере предусматривается некоторое количество свободных разъемов именно для этой цели (либо занятые разъемы доцускают «расширение» и вставление новых плат), причем по всем разъемам разводятся сигналы магистрали и питающие напряжения. Некоторые машины используют «патентованные» магистрали (например IBM PC), другие базируются на стандартных микрокомпьютерных магистралях (например рабочая станция с магистралью VME), наконец, в некоторых вообще не предусматривается дополнительных разъемов (например исходные машины Macintosh). Каждая магистраль рассчитана на платы некоторого стандартного размера (или размеров), от крошечных плат размером дюйм до гигантских дюйм плат Fastbus. Каждая плата, в зависимости от магистрали, для которой она предназначена, имеет вдоль одного края от 50 до 300 соединений либо в форме позолоченных печатных ламелей, либо в виде многоштырьковых соединителей, припаянных к плате; последние известны под именем «составных» (two-part) соединителей и, как правило, более надежны, чем печатные плоские разъемы.

Имеющиеся на рынке интерфейсы для решения стандартных задач (диски, графика, связь, аналоговый ввод-вывод) обычно монтируются на платах, которые вставляются в свободные разъемы машины. Если интерфейс управляет периферийным устройством, они связываются кабелями; в тех случаях, когда у интерфейса очень много входов и выходов (как, например, у цифрового логического анализатора), он может соединяться кабелем с внешней частью в виде панели или коробки, где больше места для разъемов (и дополнительных схем).

В любом случае обычно используется гибкий ленточный кабель, причем предусматриваются меры для снижения уровня перекрестных помех на сигнальных и стробирующих линиях. Один из способов заключается в заземлении каждой второй линии в кабеле; другой предполагает использование гибкого кабеля, скрепленного с гибкой же металлической заземленной подложкой, которая уменьшает индуктивность и помехи и в то же время обеспечивает почти постоянный импеданс кабеля. Для обоих конструкций в продаже имеются многоконтактные «оконечные заземлители», которые подключаются к кабелю путем обжатия; смотрите каталоги AMP, Berg, Ansley, ЗМ и т.д. Альтернативой ленточному кабелю служит кабель, сделанный из многих скрученных пар, каждая из которых содержит одну сигнальную и одну заземленную линию. Кабель из скрученных пар выпускается во многих модификациях, включая щеголеватый плоский кабель, напоминающий ленточный (кабель фирмы Allied/Spectra). В кабель через каждые полметра включается плоский нескрученный участок, на который можно надеть обычный обжимающий соединитель для ленточного кабеля. Поскольку для передачи данных между интерфейсной платой и устройством обычно используется протокол со стробированием, защищать все сигнальные линии от наводок нет необходимости. Защита требуется лишь для синхронизирующих импульсов и, других линий стробов и разрешений. Если линии имеют значительную длину, следует использовать согласованные нагрузки и комбинации приемников и драйверов, как это описано в разд. 9.14.

Нестандартные интерфейсы лучше всего выполнять таким же образом, либо путем разработки для них печатной платы, либо используя одну из универсальных интерфейсных плат, выпускаемых такими компаниями, как Douglas, Electronic Solutions и Vector. Эти пустые платы имеют места для подключения микросхем и других компонентов (включая оконечные заземлители для внешних кабелей) как припаиванием, так и накруткой (подробнее об этом см. в гл. 12). Некоторые платы содержат встроенные схемы для взаимодействия с магистралью, включая обслуживание прерываний и даже ПДП.

В некоторых случаях наилучшим решением является разработка интерфейса, частично располагаемого в компьютере, а частично - снаружи, как это показано на рис. 10.15. Тогда «компьютерная» часть интерфейса может включать, например, лишь простой параллельный порт ввода-вывода, либо в виде покупной платы, либо собственной разработки. Кабель, соединяющий две части интерфейса, оказывается простым; если требуется скоростная передача при большой протяженности кабеля, можно использовать высокопроизводительные комбинации приемников, обсуждавшиеся в разд. 9.14 (например или симметричные микросхемы , или даже волоконную оптику). Такой подход к конструированию интерфейсов может быть особенно полезен при работе со слабыми аналоговыми сигналами, поскольку в этом случае чувствительные к помехам линейные цепи можно удалить от рева наводок цифровых схем компьютера (и приблизить к источнику аналоговых сигналов); это также позволяет с особым вниманием отнестись к поддержанию «в чистоте» заземленных линий аналогового сигнала.

SCSI, IEEE-488 и другие интерфейсы.

В продаже имеются буквально сотни вставных плат для распространенных магистралей вроде IBM PC, Multibus, VME и Q-bus, выполняющих необозримое множество функций. Эти платы недороги и просты в использовании, так что перед разработкой собственной платы вы должны сначала выяснить (а) нет ли такой же платы в продаже и (б) нельзя ли использовать в качестве «резидентной в компьютере» части вашего интерфейса простую плату параллельного порта, как это описывалось в предыдущем разделе. Есть и другая возможность-подключить ваше устройство к компьютеру через стандартный встроенный параллельный порт Centronics либо через последовательный порт (см. разд. 10.19 и 10.20).

Рис. 10.15. Структура разделенного интерфейса.

Поскольку эти порты одинаковы на всех микрокомпьютерах, такое решение сделает ваше устройство переносимым, даже на микрокомпьютер с другой магистралью (или вообще без магистрали!). Если ваше устройство подключается к последовательному порту, оно, скорее всего, будет включать собственный микропроцессор, что даст вам право думать о нем скорее как о компьютере, чем о периферийном устройстве. Однако как мы покажем в следующей главе, разработка небольшого прибора, управляемого микропроцессором - дело забавное, простое и недорогое; собственно, нет никаких причин выделять микропроцессор среди других БИС, а их-то вы не колеблясь используете в своем приборе!

Развивая дальше предложенную идею, следует сказать, что имеется целый ряд стандартов на «кабельные интерфейсы», ставшие последнее время весьма популярными. Они называются SCSI (Small Computer System -интерфейс малых компьютерных систем), IPI (Intelligent Peripherals -интерфейс интеллектуальной периферии), ESDI (Enhanced Small-Disk Interface - улучшенный интерфейс малого диска) и IEEE-488 (известный также под именами HPIB и GPIB, General-Purpose Interface - интерфейсная магистраль общего назначения). Интерфейс SCSI (произносится ), в особенности благодаря обилию дисков и другой периферии, подключаемой непосредственно к порту SCSI, стал стандартным элементом многих микрокомпьютеров. При этом для компьютеров, не имеющих встроенного порта SCSI, выпускаются вставляемые интерфейсные платы с этим портом. SCSI является потомком SASI (Shugart Assosiates System Interface - простой параллельной магистрали, которую фирма Shugart придумала для своих дисководов жестких дисков) и в простейшем виде представляет собой байтовый двунаправленный параллельный протокол с квитированием. Интерфейс обеспечивает несколько режимов, включая синхронную и асинхронную передачу с симметричными или несимметричными драйверами; хотя первоначально он использовался для связи единственного ЦП с единственным диском, однако с его помощью можно несколько ЦП подключить к нескольким дискам. Типичные скорости передачи составляют 1,5 Мбайт/с для асинхронного режима и 4 Мбайт/с для синхронного; асинхронный протокол медленнее, так как в процессе каждой пересылки туда и сюда передаются сигналы квитирования.

С несимметричными драйверами SCSI обеспечивает передачу на , а с симметричными на .

Магистраль IEEE-488 (первоначально-интерфейс HPIB фирмы Hewlett-Packard) была разработана для подключения лабораторных приборов к компьютеру. Интерфейс включает полный протокол связи по магистрали нескольких приборов и использует терминологию локальных сетей. IEEE-488 занимает прочные позиции в инструментальной технике; фирмы Hewlett-Packard, Keithley, Philips/Fluke, Tektronix и Wavetek комплектуют этим интерфейсом большую часть выпускаемых ими приборов. Платы с интерфейсом IEEE-488 выпускаются почти для всех микрокомпьютеров. В разд. 10.20 мы еще вернемся к обсуждению интерфейсов SCSI и IEEE-488.

<< Предыдущий параграф Следующий параграф >>
Оглавление