Главная > Схемотехника > Искусство схемотехники, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

7.11. Происхождение и виды шумов

Термин «шум» применяется ко всему тому, что маскирует полезный сигнал, поэтому шумом может оказаться какой-нибудь другой сигнал но чаще всего этот термин означает «случайный» шум физической (чаще всего тепловой) природы. Шум характеризуется своим частотным спектром, распределением амплитуд и источником (происхождением). Мы назовем основных «возмутителей спокойствия».

Джонсоновский шум.

Любой резистор на плате генерирует на своих выводах некоторое напряжение шума, известное как «шум Джонсона» (тепловой шум). У него горизонтальный частотный спектр, т. е. одинаковая мощность шума на всех частотах (разумеется, до некоторого предела). Шум с горизонтальным спектром называют «белым шумом». Реальное напряжение шума в незамкнутой цепи, порожденное сопротивлением R, находящимся при температуре Т, выражается формулой

где к - постоянная Больцмана, Т - абсолютная температура в кельвинах - полоса частот в Гц. Таким образом, - это то, что получится на выходе совершенно бесшумного фильтра с полосой пропускания В, если подать на его вход напряжение, порожденное резистором при температуре Т. При комнатной температуре

Например, резистор на 10 кОм при комнатной температуре имеет среднеквадратичное напряжение шума в разомкнутой цепи порядка , измеренное в полосе (измерять можно, например, подсоединив резистор ко входу высококачественного усилителя и наблюдая напряжение на выходе усилителя вольтметром). Сопротивление источника этого напряжения шума равно просто R. На рис. 7.38 дан график простой зависимости плотности напряжения шума Джонсона (среднеквадратичное напряжение на корень квадратный из ширины полосы) от сопротивления источника.

Амплитуда напряжения шума Джонсона, вообще говоря, в данный конкретный момент непредсказуема, но она подчиняется закону распределения Гаусса (рис. 7.39), где вероятность того, что мгновенное значение напряжения заключено между U и , а [ - определенное выше среднеквадратичное (эффективное) напряжение шума.

Рис. 7.38. Зависимость напряжения теплового шума от сопротивления.

Рис. , где есть эффективный шум. Площадь заштрихованной области равна вероятности нахождения мгновенного значения напряжения между U и .

Шум Джонсона устанавливает нижнюю границу напряжения шумов любого детектора, источника сигнала или усилителя, имеющего резистивные элементы. Активная составляющая полного сопротивления источника порождает шум Джонсона; так же действуют резисторы цепей смещения и нагрузки усилителя. Скоро мы увидим, как это происходит.

Интересно отметить, что любой физический аналог сопротивления (любой механизм потерь энергии в физической системе, например, вязкое трение малых частиц жидкости) имеет связанные с ним флуктуации соответствующей физической величины (в приведенном примере - это флуктуации скоростей частиц, проявляющиеся как хаотическое броуновское движение). Шум Джонсона - это просто специальный случай такого флуктуационно-диссипативного явления.

Шум Джонсона не следует путать с дополнительным шумовым напряжением, который возникает из-за эффекта флуктуации сопротивления, когда приложенный извне ток проходит через резистор. Этот «избыточный шум» имеет спектр приблизительно 1 и он сильно зависит от конкретной конструкции резистора: Мы об этом поговорим позже.

Дробовой шум.

Электрический ток представляет собой движение дискретных зарядов, а не плавно непрерывное течение. Конечность (квантованность) заряда приводит к статистическим флуктуациям тока. Если заряды действуют независимо друг от друга, то флуктуирующий ток определяется формулой

где q - заряд электрона ( Кл), - постоянная составляющая («установившееся» значение) тока, а В - ширина полосы частот измерения. Например, «установившийся» ток в 1 А фактически имеет флуктуации со среднеквадратичным значением 57 нА в полосе шириной , т. е. он отклоняется примерно на 0,000006%. Относительные флуктуации больше для меньших токов: «установившийся» ток в имеет флуктуации (среднеквадратичные) в той же полосе частот 0,006%, т. е. — 85 дБ. При постоянном токе 1 пА среднеквадратичные флуктуации тока (полоса та же) будут составлять , т. е. отклонение на Дробовой шум - это «шум дождя на жестяной крыше». Как и резистивный шум Джонсона, это гауссовский белый шум.

Приведенная выше формула для дробового шума выведена в предположении, что создающие ток носители заряда действуют независимо друг от друга. Это справедливо, когда заряды преодолевают некоторый барьер, как например, в случае тока через диодный переход, где заряды перемещаются за счет диффузии, однако это не так в таком важном случае, когда мы имеем дело с металлическими проводниками, где между носителями заряда существует тесная корреляция.

Таким образом, ток в простой резистивной схеме имеет намного меньшую шумовую составляющую, чем это предсказывает формула для дробового шума. Другое важное исключение для этой формулы дает наша стандартная транзисторная схема источника тока (рис. 2.21), в которой отрицательная обратная связь сводит дробовой шум на нет.

Упражнение 7.4. Пусть в качестве коллекторной нагрузки в малошумящем усилителе используется резистор; коллекторный ток сопровождается при этом дробовым шумом. Покажите, что в выходном шуме напряжения доминирует дробовой тпум (а не тепловой шум резистора), начиная с момента, когда падение напряжения в установившемся режиме на резисторе нагрузки становится больше при комнатной температуре).

Шум 1/f (фликкер-шум).

Дробовой и тепловой шумы - это неуменыпаемые виды шума, возникающие в соответствии с законами физики. Самый дорогой и тщательно изготовленный резистор имеет тот же тепловой шум, что и дешевый углеродный резистор с тем же сопротивлением. Реальные устройства, кроме того, имеют различные источники «избыточных шумов». Реальные резисторы подвержены флуктуациям сопротивления, которые порождают дополнительное напряжение шума (которое складывается с постоянно присутствующим напряжением теплового шума), пропорциональное протекающему через резистор постоянному току. Этот шум зависит от многих факторов, связанных с конструкцией конкретного резистора, включая резистивный материал и особенно концевые соединения. Вот типичные значения избыточного шума различных типов резисторов, выраженные в микровольтах на вольт приложенного к резистору напряжения (приводится среднеквадратичное значение, измеренное на одной декаде частоты):

Этот шум имеет спектр, примерно описываемый зависимостью (постоянная мощность на декаду частоты) и иногда называется «розовым шумом». Шум, возникающий по другим причинам, также часто имеет спектр примерами таких шумов являются шум тока базы у транзистора и шум катодного тока в электронных лампах. Любопытно, что шум вида встречается в природе в самых неожиданных проявлениях, например, скорости океанических течений, потоке песка в песочных часах, пассажирских потоках на скоростных железных дорогах в Японии, а также годовом стоке Нила за последние 2000 лет. Если построить график громкости звучания какого-нибудь произведения классической музыки, то опять-таки получится спектр Общего принципа, объясняющего происхождение шумов со спектром , не найдено, хотя он, казалось бы, носится в воздухе, но в каждом отдельном случае часто можно определить источник такого шума.

Помехи.

Как уже говорилось, одной из форм шумов являются мешающие сигналы или паразитные наводки. В этом случае спектр и амплитудные характеристики зависят от мешающего сигнала. Например, наводка от сети 50 Гц имеет спектр в виде пика (или ряда пиков) и относительно постоянную амплитуду, а шум зажигания автомобиля, шум грозовых разрядов и другие шумы импульсных источников имеют широкий спектр и всплески амплитуды. Другим источником помех являются радио- и телепередающие станции (особенно серьезна эта проблема вблизи больших городов), окружающее электрооборудование, моторы, лифты, метро, выключатели, переключательные стабилизаторы, телевизоры. Все эти проблемы существуют в слегка измененном виде во всех тех случаях, когда что-нибудь влияет на измеряемый вами параметр. Например, оптический интерферометр восприимчив к вибрации, а на чувствительные измерения радиочастот (например, в ЯМР-спектроскопии) может повлиять внешний радиочастотный сигнал. Многие схемы, равно как детекторы или даже кабели, чувствительны к вибрациям и звуку, и они, по торговой терминологии, страдают «микрофонным эффектом».

От многих из этих источников шума можно отделаться путем тщательного экранирования и фильтрации, как будет сказано в этой главе ниже. Иногда приходится принимать совершенно драконовские меры, включая монолитные каменные столы (для виброизоляции), комнаты с постоянной температурой, звукопоглощающие камеры и комнаты с электрической экранировкой.

<< Предыдущий параграф Следующий параграф >>
Оглавление