Главная > Схемотехника > Искусство схемотехники, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ПОСЛЕДОВАТЕЛЬНОСТНАЯ ЛОГИКА

8.16. Устройства с памятью: триггеры

Вся рассмотренная выше цифровая логика строилась на комбинационных схемах (т. е. наборах вентилей), в которых выход полностью определяется текущим состоянием входов. В этих схемах отсутствует «память», отсутствует предыстория. Жизнь цифровой логики станет более интересной, если устройства снабдить памятью. Это дает возможность конструировать счетчики, арифметические регистры и различные «умные» схемы, которые выполнив одну интересную функцию, начинают делать другую. Основным узлом таких схем является триггер, колоритное имя для описания устройств, которые в простейшей форме представлены на рис. 8.47.

Рис. 8.47.

Предположим, что оба входа А и В имеют высокий уровень. Тогда, в каком состоянии будут выходы X и Y? Если X будет иметь высокий уровень, то последний будет присутствовать на обоих входах вентиля , и устанавливать Y в состояние низкого уровня. Это согласуется с состоянием выхода X (высокий уровень), следовательно, все правильно. Не правда ли?

Неверно! Схема симметрична, следовательно, правомерно будет и состояние, при котором

Состояние, когда оба выхода X и Y имеют высокий (или низкий) уровень, невозможно (вспомним, что высокий уровень). Таким образом, триггер имеет два устойчивых состояния (иногда его называют «бистабильной» схемой). В каком из этих двух состояний он окажется, зависит от его предыстории, т. е. он обладает памятью. Для того чтобы в эту память что-то записать, достаточно на один из входов триггера кратковременно подать низкий уровень. Например, после кратковременной подачи низкого уровня на вход А триггер гарантированно установится в состояние

независимо от того, какое состояние он имел прежде.

Подавление дребезга контактов.

Рассмотренный нами триггер со входами S (установки в ) и R (установки в или сброса) оказывается весьма полезным для многих применений. На рис. 8.48 показан типичный пример его использования. По идее эта схема должна открывать вентиль и пропускать входные импульсы, если ключ разомкнут. Ключ связан с землей (а не с шиной из-за особенности биполярных -схем (в противоположность КМОП-элементам), состоящей в том, что вы должны обеспечить отвод тока от входа ТТЛ в состоянии низкого уровня для LSTTL), в то время как в состоянии высокого уровня входной ток близок к нулю. Кроме того, обычно в устройствах имеется шина земли, удобная для подсоединения к ней ключей и других органов управления.

Рис. 8.48. «Дребезг» переключения.

Рис. 8.49. Схема подавления дребезга.

При использовании такой схемы возникает проблема, обусловленная «дребезгом» контактов ключа. За время порядка после замыкания ключа его контакты входят в соприкосновение друг с другом обычно от 10 до 100 раз. Вы получите в итоге форму сигналов, указанную на рисунке; если бы выход подключался к счетчику или регистру сдвига, то они наверняка отреагировали бы на каждый дополнительный импульс, вызванный этим дребезгом контактов.

На рис. 8.49 показано, как разрешить эту проблему. При первом же соприкосновении контактов триггер изменит свое состояние и в дальнейшем уже не будет реагировать на последующий дребезг, поскольку двухпозиционный однополюсный ключ не может совершать колебания до противоположной позиции. В результате дребезг выходного сигнала будет отсутствовать, как и показано на диаграмме. Такая схема подавления дребезга широко используется; так, микросхема 279 имеет четыре -триггера в одном корпусе. К сожалению, такая схема имеет небольшой недостаток. Дело в том, что первый импульс, возникающий на выходе вентиля после того, как он откроется, может оказаться укороченным: это можно определить по моменту, замыкания ключа по отношению к входной серии импульсов.

Рис. 8.50.

То же самое относится и к конечному импульсу последовательности (разумеется, что и ключи без подавления дребезга имеют те же проблемы). В тех случаях, когда этот нежелательный эффект может оказать какое-то значение, применяется схема синхронизатора, которая позволяет его устранить.

Многовходовые триггеры. На рис. 8.50 показана еще одна простая схема триггера. В ней использованы вентили : высокий уровень на входе устанавливает соответствующий выход триггера в состояние низкого уровня. Устанавливать или сбрасывать триггер различными сигналами можно благодаря наличию нескольких входов. На этом схемном фрагменте нагрузочные резисторы не используются, поскольку входные сигналы формируются где-нибудь в другом месте (с помощью стандартных выходов с активной нагрузкой).

<< Предыдущий параграф Следующий параграф >>
Оглавление