Главная > Схемотехника > Искусство схемотехники, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

9.10. Оптоэлектроника

В двух предыдущих главах мы использовали светодиоды и цифровые индикаторные приборы на светодиодах в различных примерах схем по мере необходимости. Светодиоды относятся к обширной области оптоэлектроники, которая включает в себя и устройства отображения на основе других технологий, а именно, жидких кристаллов, люминесцентных и газоразрядных приборов. Эта область включает также оптические электронные устройства, которые используются не только как индикаторы и дисплеи; к ним относятся оптроны, твердотельные реле, датчики положения , диодные лазеры, матричные детекторы («приборы с зарядовой связью», ПЗС), электронно-оптические преобразователи и большое разнообразие компонентов, используемых в волоконной оптике.

Хотя мы будем и дальше использовать в качестве примеров различные «волшебные» приборы по мере их необходимости, нам представляется уместным обратиться к области оптоэлектроники, поскольку с ней связаны некоторые обсуждаемые здесь проблемы сопряжения логики.

Индикаторы. Электронные приборы выглядят более привлекательно и проще в применении, если на них есть разноцветные лампочки. В этой области светодиоды полностью вытеснили все предыдущие технологии. Вы можете приобрести красные, желтые и зеленые индикаторы, причем в различных корпусах, наиболее удобными из которых являются лампы для монтажа на панели и различные типы индикаторов для монтажа на печатной плате. Каталоги представляют поразительное их разнообразие по размерам, цвету, светоотдачи и углу излучения. Последняя характеристика требует некоторого пояснения: в так называемые «заливные» светодиоды вводится специальное рассеивающее вещество, поэтому их свечение в широком диапазоне угла зрения одинаково; во многих случаях это хорошо, но за это вы расплачиваетесь яркостью.

С электрической точки зрения светодиод представляет собой обычцый диод с прямым падением напряжения около 2 В (при изготовлении светодиодов используют фосфид арсенида галлия, обладающий более широкой запрещенной зоной и, следовательно, большим падением напряжения в прямом направлении, чем кремний). Типичные «заливные» светодиоды панельного типа дают хорошее свечение при прямом токе в углубленной части прибора можно обойтись обычно , особенно если используются светодиоды с малым углом излучения.

На рис. 9.21 показаны способы управления индикаторами на светодиодах. Большинство схем очевидно, однако заметьте, что, поскольку биполярные ТТЛ-элементы имеют небольшой ток отдачи, схему приходится строить так, чтобы низкий логический уровень включал светодиод; для сравнения отметим, что КМОП-семейства симметричны относительно нагрузочной способности по току.

Рис. 9.21. Управление светодиодными индикаторами.

n-МОП-схемы, как и биполярные -схемы, обладают слабой отдачей тока, к тому же их способность к отводу тока весьма ограничена, поэтому следует использовать буфер (например, вентиль НСТ) или дискретный полевой транзистор. Учтите также, что некоторые индикаторы на светодиодах выпускаются с внутренними токоограничивающими резисторами (или даже с внутренней схемой фиксации тока); в этих случаях внешний резистор можно не ставить.

Можно использовать небольшие матрицы индикаторов, наборы из 2, 4 или 10 светодиодов в ряд, предназначенные для монтажа на печатной плате. Последние используются чаще всего для вывода данных в виде линейных гистограмм. Они выпускаются как для вертикального монтажа, так и для монтажа под прямым углом. Можно также использовать индикаторы для монтажа на панели, в которых объединены красные и зеленые светодиоды в одном корпусе.

Панель при этом становится выразительнее, - плохие и хорошие условия отображаются разными цветами. Мы используем индикаторы на светодиодах, выпускаемые такими фирмами, как Dailight, General Instrument, HP, Panasonic, Siemens и Stanley. Последняя специализируется на лампах необычайно высокой эффективности; вы можете узнать эти приборы на выставках по электроники по изумленным взглядам посетителей.

Дисплеи.

Дисплеем называют оптоэлектронный прибор, который может отобразить цифру (цифровой дисплей), -ричную цифру, т. е. 0-9 и (-ричный дисплей) или любую букву или цифру (буквенно-цифровой дисплей). В настоящее время доминирующими технологиями производства дисплеев являются светодиоды и жидкие кристаллы. Жидкокристаллические дисплеи ( - это новейшая технология, которая обладает существенными преимуществами для батарейного оборудования, поскольку имеет очень низкую мощность рассеивания, для оборудования, находящегося на открытом воздухе или в условиях высокой внешней освещенности, для создания дисплеев с заказными формами и символами и дисплеев с большим числом цифр и букв. С другой стороны, светодиоды несколько проще в применении, особенно, если вам нужно всего несколько цифр или букв. Кроме того, они выпускаются трех цветов и хорошо выглядят в условиях пониженной освещенности, где их показания легче считываются, чем показания ЖКД.

В области дисплеев на большое число символов, скажем, на одну или две строки текста, с ЖКД конкурируют газоразрядные (плазменные) дисплейные панели, особенно в том случае, когда требуется ясность и контрастность. Вместе с тем плазменные дисплеи потребляют большую мощность, поэтому для батарейного оборудования лучше использовать ЖКД.

Рис. 9.22.

Дисплеи на светодиодах.

На рис. 9.22 показаны разновидности дисплеев на светодиодах. Простейшим является -сегментный дисплей; он может отображать цифры 0-9 и шесть букв расширения , хотя последние отображаются несколько неуклюже . Вы можете приобрести односимвольные -сегментные дисплеи самых разных размеров и дисплеи в виде «палочек» по 2, 3, 4 или 8 символов (обычно они предназначены для мультиплексирования - символы отображаются по одному быстро следуя друг за другом). Односимвольные дисплеи имеют выводы для 7 сегментов и общего электрода; таким образом, возможны две разновидности дисплеев - с общим катодом и с общим анодом. В дисплеях на несколько символов выводится общий электрод каждого символа, но соответствующие сегменты объединяются; это, как раз то, что нужно для мультиплексирования.

-сегментные дисплеи и матричные дисплеи на точек выпускаются в двух вариантах: «тупые» дисплеи, в которых выведены сегменты и общий электрод (также как и в -сегментных дисплеях) и «умные» дисплеи, которые принимают на себя всю тяжелую работу по дешифрации и формированию.

Не будем больше заниматься обобщениями, рассмотрим лучше несколько примеров (рис. 9.23). На первой схеме показан способ управления дисплеем на одном -сегментном светодиодном индикаторе с общим катодом. Элемент - это элемент «регистр/дешифратор/формирователь с преобразованием двоично-десятичного кода в -сегментный»; он способен отдавать ток около при активном выходе . Последовательные резисторы гарантируют, что ток сегментов будет ограничен указанной величиной при прямом падении напряжения на диодах 2 В. Можно использовать матрицу из одинаковых резисторов в удобном корпусе с однорядным расположением выводов.

Рис. 9.23. Управление дисплеем на -сегментном светодиодном индикаторе, а - одноцифровой; б - мультиплексированный.

Если вы используете принцип мультиплексирования, т. е. высвечиваете только одну цифру за одно обращение, вам понадобится всего один кристалл дешифратора/формирователя, даже при отображении нескольких цифр. На рис. показан принцип мультиплексирования; используется БИС -разрядного (десятичных разрядов) счетчика с встроенными -сегментными мультиплексируемыми формирователями. Элемент предоставляет свои сегментные формирователи (активный высокий уровень с большой нагрузочной способностью) по очереди в распоряжение каждой цифре, одновременно устанавливая активный высокий уровень на соответствующем цифровом выходе . Остальная часть схемы не требует пояснений, за исключением, быть может, той неприятности, что цифровые выходы прижимаются к уровню выше земли, соответствующему падению напряжения на диоде. К счастью, допускает подобное включение, поскольку цифровые выходы имеют буферную и токоограничивающую цепь.

Рис. 9.24. Интегральные дисплеи, а - односимвольный, точечная матрица; б --символьный, -сегментный, адресуемый.

На рис. 9.24, а показано, как управлять одним -ричным дисплеем, выполненным в виде точечной матрицы . Элемент HP 5082-7340 является примером «умного» дисплея с встроенными регистром, дешифратором и формирователем. Все, что вам надо сделать, - это выставить -разрядные данные, подождать не менее 50 не и затем активизировать регистр высоким уровнем. На рис. 9.24, б показан один из «интеллектуальных» (умнее ) дисплеев фирмы набор на -сегментных дисплеях.

Рис. 9.25. Коды -сегментного дисплея фирмы Siemens. (С разрешения фирмы Siemens Components, )

Этот дисплей предназначен для того, чтобы работать с микропроцессором по типу памяти; мы еще вернемся к этому в следующих двух главах. Короче говоря, вы выставляете любой -разрядный символ и его позицию (-разрядный адрес), затем подаете WR (запись) на время, гарантйрующее активизацию кристалла. Данные запоминаются внутри элемента, затем осуществляется соответствующее изменение позиции для отображения очередного символа. На рис. 9.25 показан набор отображаемых символов.

Если вы хотите использовать «тупой» дисплей (возможно, то, что вам надо, недоступно интеллектуальному дисплею), но вы уже избалованы простотой интеллектуальных дисплеев, можно просто применить кристалл типа -разрядного элемента фирмы Intersil, который выглядит со стороны микропроцессора как память и который управляет «тупым» светодиодным дисплейным набором от соответствующих сегментных и цифровых формирователей. Другой способ состоит в том, чтобы дать возможность микропроцессору делать всю «умную» работу, используя разряды своих «параллельных портов» для управления соответствующими линиями. Это станет для вас более понятным, после того как вы усвоите две главы о микропроцессорах (гл. 1, 2).

Жидкокристаллические и газоразрядные дисплеи.

Многое из того, что мы уже рассказали о дисплеях на светодиодах, применимо и к ЖКД. Однако существует несколько важных отличий. Вот одно из них: для управления ЖКД необходимо использовать переменное напряжение, иначе их жидкие нити разрушаются. Поэтому формирователи ЖКД обычно генерируют прямоугольные сигналы, синхронизированные с сигналом подложки ЖКД. Примером может служить , жидкокристаллический родственник светодиодного элемента типа «регистр/дешифратор/формирователь».

Другое отличие состоит в том, что вам не часто приходится видеть односимвольные дисплеи на жидких кристаллах. Они выпускаются в виде больших панелей, которые отображают одну или две строки текста. К счастью, производители достаточно ясно представляют себе, как можно получить довольно сложные вещи, поэтому они поставляют совершенные дисплеи, которые более, чем интеллектуальны - просто на уровне гения. В общем вы обращаетесь к этим дисплеям через микропроцессор и они превращаются в своего рода блок памяти (как и в случае дисплея на рис. 9.24). Отображаться будет все, что бы вы ни записали. Некоторые еще более фантастические дисплеи пошли даже дальше, они способны хранить несколько сообщений и осуществлять связь через последовательные порты. Загляните в ЕММ, чтобы узнать производителей (см. библиографию).

Газоразрядные дисплеи выделяются своими красивыми красно-оранжевыми символами; вы можете их увидеть на некоторых дорогостоящих портативных компьютерах.

Для работы газоразрядных дисплеев необходимы высоковольтные формирователи и производители обычно предусматривают средства формирования. Вы можете приобрести одно- и многоцифровые дисплеи, а также большие многосимвольные панели с памятью и удобным интерфейсом. Примером последнего может служить многостроковый дисплей фирмы Cherry, снабженный памятью с аварийным батарейным питанием, которая может хранить 512 сообщений, осуществлять расслоение данных, поступающих в реальном масштабе времени, и позволяет производить редактирование содержимого. Возможно, вы называете такие устройства не дисплеями, а компьютерами, которым положено иметь дисплей!

Оптроны и реле.

Излучатель на светодиоде, размещенный в непосредственной близости от фотодетектора, образует очень полезный предмет, известный как оптопара или оптрон. В двух словах, оптроны позволяют обеспечить обмен цифровыми сигналами (а иногда и аналоговыми) между схемами с раздельной землей. Такая «гальваническая развязка» является хорошим способом избежать земляных контуров в оборудовании, которое управляет удаленной нагрузкой. Это особенно важно в схемах, которые взаимодействуют с силовыми фидерами переменного тока. Например, вам понадобилось включать и выключать нагреватель по цифровому сигналу, вырабатываемому микропроцессором; в этом случае вы, наверное, будете использовать «твердотельное» реле, состоящее из светодиода, подключенного к сильноточному симистору. Некоторые импульсные источники питания, управляемые переменным током, (например, источник питания, используемый в ), используют в изолированном контуре обратной связи оптрон (см. разд. 6.19). Точно также проектировщики высоковольтных источников питания используют иногда оптроны для того, чтобы передать сигнал в схему с высоким напряжением.

Вы можете воспользоваться достоинствами оптронов даже в менее экзотических ситуациях. Например, оптический полевой транзистор позволит вам переключить аналоговый сигнал без всякой инъекции заряда; то же самое справедливо для схем квантования с запоминанием и интеграторов. Использование оптронов позволит избежать треволнений при управлении контурами с индустриальными токами, приводами молотов и т. п. Наконец, гальваническая развязка оптронами пригодится в прецизионных и низкоуровневых схемах. Трудно, например, воспользоваться всеми достоинствами -разрядного АЦП, поскольку цифровые выходные сигналы (и помехи на цифровой земле, к которой вы подключаете выход преобразователя) возвращаются на «передний край» аналоговой части. Вы можете освободить себя от всех забот, связанных с помехами, применив оптическую развязку в цифровой части.

Оптроны обычно обеспечивают изоляцию в 2500 В (среднеквадратичное), сопротивление изоляции 1012 Ом и емкостную связь между входом и выходом менее пикофарады.

Прежде чем обратиться к реальным оптронам, бросим беглый взгляд на фотодиоды и фототранзисторы. Видимый свет вызывает ионизацию в кремнии и образование пар зарядов в открытой базовой области; эффект от этого точно такой же, как от внешнего базового тока. Существуют два способа использования фототранзистора: 1. В качестве фотодиода, подключенного только к базовому и коллекторному выводам; в этом случае фототок будет составлять несколько процентов от тока светодиода. Фотодиод генерирует фототок независимо от того, прикладываете вы напряжение смещения или нет; следовательно, вы можете подключать его прямо к суммирующему переходу операционного усилителя (виртуальная закоротка) или обеспечить обратное смещение (рис. 9.26 а, б). 2. Если вы используете ток фотодиода как базовый ток, то получите обычное усиление тока с результирующим током , который, как правило в 100 раз больше базового; в этом случае, необходимо сместить транзистор, как показано на рис. 9.26, в.

Рис. 9.26. Оптроны

(см. оригинал)

За увеличенный ток приходится платить более медленным откликом, что обусловлено открытой базовой цепью. Для повышения быстродействия можно добавить резистор с базы на эмиттер; однако это дает пороговый эффект, поскольку фототранзистор не переходит в состояние проводимости до тех пор, пока ток фотодиода не достигнет величины, достаточной для получения напряжения на внешнем базовом резисторе. В цифровых схемах порог может оказаться полезным, но в аналоговых приводит к нежелательной нелинейности.

На рис. 9.26, г-у показаны типичные примеры применения различных оптронов, с которыми вам, возможно, доводилось встречаться. Самые первые (и самые простейшие) представлены элементом , пара светодиод - фототранзистор с коэффициентом передачи по току 40% (мин) и большим временем выключения при нагрузке 100 Ом. На рисунке показан способ его использования: вентиль и резистор образуют формирователь с ограничением по току , а относительно большой коллекторный резистор гарантирует переключение выхода в пределах логических уровней с насыщением. Заметьте, что применен инвертор с триггером Шмитта; здесь это хорошая мысль в связи с большим временем переключения. Вы можете приобрести пары светодиод-фототранзистор с коэффициентом передачи по току порядка 100% и выше (например, с коэффициентом , а также пары светодиод - фототранзисторы Дарлингтона; они даже медленнее фототранзисторов! Для повышения быстродействия производители иногда разделяют фотодиод и транзистор, как в элементах , оптотранзистор и оптосхема Дарлингтона.

Эти оптроны, конечно, хороши, но иногда раздражают необходимостью использовать дискретные компоненты и на входе и на выходе. Более того, вход нагружает обычные логические вентили до их максимальной нагрузочной способности, а выход с пассивной нагрузкой «страдает» медленным переключением и слабой помехоустойчивостью. Для того чтобы избавиться от этих недостатков кремниевые кудесники предлагают нам «логические» оптроны. Элемент на рис. 9.26, и занимает промежуточное положение - диодный вход и логический выход; здесь все еще нужен большой входной ток (по техническим данным мин. для того, чтобы гарантировать переключение выхода), но вы получаете чистый логический перепад (хотя и с открытым коллектором) и скорость . Заметьте, что на внутренние выходные схемы необходимо подавать питание В. Более новые элементы серии фирмы General Instrument (рис. 9.26, к) предлагают то, что вам действительно требуется: входы и выходы с логическими уровнями, каскадный выход или открытый коллектор по выбору и скорость . Поскольку на входе и на выходе имеются логические схемы, обе стороны кристалла требуют подачи напряжения для питания логики.

На рис. 9.26 показаны еще несколько вариантов схем в продолжение темы светодиод - фототранзистор. Элемент содержит пару встречно-включенных светодиодов, поэтому им можно управлять переменным током. Для получения защищенности по напряжению . квадр.) в используется длинный изоляционный зазор (и соответствующий корпус); для остальных оптронов эта величина составляет . Элемент - это оптотиристор, удобный для переключения высоких напряжений и больших токов. В однонаправленный тиристор заменен на симистор, т. е. на двунаправленный тиристор; с его помощью можно непосредственно управлять нагрузкой переменного тока (рис. 9.15, о). При управлении нагрузками переменного тока включение нагрузки лучше всего производить в момент пересечения волной переменного тока нуля для избежания попадания выбросов в силовые линии. Это легко осуществить с помощью оптосимисторов, содержащих схему «переключения по нулевому напряжению» (которая блокирует запуск симистора до следующего пересечения нуля); как раз такую схему использует небольшой элемент МСР3043, как и приведенные на рисунке «твердотельные реле» на более сильные токи.

Элемент фирмы IR выпускается в -выводном корпусе типа DIP, а мощные элементы располагаются в мощных модулях с размерами дюйма, предназначенных для монтажа с отводом тепла.

Остальные оптроны, представленные на рис. 9.26, можно использовать для линейных сигналов. Полевые оптотранзисторы серии можно использовать как изолированный переменный резистор или как изолированный аналоговый ключ. Здесь нет проблем, связанных с совместимостью уровней напряжения, тиристорным защелкиванием или внесением зарядов. Вы можете использовать один из таких элементов в квантователях с запоминанием и интеграторах. Похожими приборами являются элементы «BOSFET» серии PVR, но они содержат в качестве выходного элемента пару соединенных последовательно мощных полевых МОП-транзистора. Такие элементы предназначены прежде всего для непосредственного переключения нагрузок переменного тока по принципу оптосимисторов. Элемент - это линейный видеоизолятор с полосой частот 10 МГц, а элемент фирмы Burr-Brown - «умный» аналоговый изоляционный элемент, в котором светодиод имеет связь с двумя согласованными фотодиодами; один из них используется в цепи обратной связи для линеаризации отклика второго фотодиода.

Прерыватели.

Пару «светодиод-фототранзистор» можно использовать в качестве датчика близости или движения. «Оптический прерыватель» состоит из светодиода, связанного по щели в 1/8 дюйма с фототранзистором. Он может обнаруживать присутствие светонепроницаемой полоски или вращения щелевого диска. Другой вариант - светодиод и фотодетектор, направленные в одну сторону; такой элемент обнаруживает присутствие в непосредственной близости отражающего объекта. Взгляните на рис. 9.27. Оптические прерыватели используются в дисководах и принтерах для обнаружения края подвижного узла.

Рис. 9.27. а - оптический прерыватель; б - датчик отражающего объекта.

Можно приобрести «кодер вращения», который генерирует квадратурную импульсную последовательность (два выхода с фазовым сдвигом 90°) при вращении вала. Он прекрасно заменяет резистивные панельные органы управления (потенциометры). Смотри разд. 11.09. При разработке любых практических схем, в которых вы собираетесь использовать оптические прерыватели или датчики с отражением, обратите внимание на датчики на эффекте Холла как на альтернативный вариант; это твердотельные датчики на магнитном поле, предназначенные для определения степени близости объекта. Обычно датчики такого типа используются в автомобильных системах зажигания вместо наконечников механических прерывателей.

Излучатели и детекторы.

Мы уже упоминали светодиоды в связи с дисплеями и оптронами.

Последнее достижение в области оптоэлектроники - это доступные недорогие твердотельные диодные -источники когерентного света в отличии от диффузионных светодиодов. Один из них вы можете увидеть, если откроете верхнюю крышку портативного проигрывателя компакт-дисков. Диодные лазеры стоят около 20 долл. и продаются фирмами, производящими бытовую электронную аппаратуру (Matsushita, Mitsubishi, Sharp и Sony). Типичный диодный лазер генерирует световой мощности на 800 нм (невидимый в ближней инфракрасной области спектра) при токе и прямом падении напряжения на диоде 2 В. Выходной поток излучается непосредственно из крошечного отверстия на кристалле с углом расхождения его можно коллимировать с помощью линзы и получить параллельный пучок или очень маленькое фокусное пятно. Светодиодные лазеры широко используются в оптоволоконной связи.

Еще одной технологией производства излучателей является линейная светодиодная матрица высокой плотности; 300 излучателей на дюйм и даже больше; такие матрицы используются в светодиодных принтерах. При успешном развитии полупроводниковой технологии такие принтеры заменят лазерные, поскольку они проще, надежнее и обладают крайне высокой разрешающей способностью.

В области детекторов существуют несколько альтернатив простым фотодиодам и фототранзисторам, которые мы обсуждали выше, особенно когда требуется скорость или чувствительность. В разд. 15.02 мы рассмотрим -диоды, приборы с зарядовой связью и усилители.

<< Предыдущий параграф Следующий параграф >>
Оглавление