Главная > Схемотехника > Искусство схемотехники, Т.2
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

9.17. Интегрирующие ЦАП

В прикладных задачах «цифровой» вход может представлять собой последовательность импульсов или колебание другого вида определенной частоты. В этом случае непосредственное преобразование в напряжение иногда оказывается более удобным, чем предварительный отсчет времени с последующим преобразованием двоичного числа по описанным выше способам.

При прямом пребразовании частоты в напряжение на каждом входном цикле генерируется стандартный импульс; он может быть как импульсом напряжения, так и импульсом тока (т. е. фиксированным количеством заряда).

Импульсная последовательность усредняется -фильтром низких частот или интегратором, создавая выходное напряжение, пропорциональное средней входной частоте. Выход, разумеется, имеет пульсации и для того, чтобы их уменьшить до уровня точности ЦАП (т. е. до 1/2 МЗР) используют фильтр низкой частоты, который замедляет выходную реакцию преобразователя. Для того чтобы пульсации были меньше 1/2 МЗР, постоянная времени Т простого RС-фильтра низких частот должна быть, по крайней мере, равной , где -период выходного сигнала -разрядного преобразователя частоты в напряжение, соответствующий максимальной входной частоте. Другими словами, время установления выхода до 1/2 МЗР будет примерно равно . -разрядный преобразователь частоты в напряжение с максимальной входной частотой при использовании сглаживающего -фильтра будет иметь время установления выходного напряжения . Используя более сложный фильтр низких частот (с крутым срезом) можно добиться лучших результатов. Однако прежде чем увлекаться затейливыми схемами фильтров, вспомните, что очень часто преобразование частоты в напряжение используется, когда не требуется выход по напряжению. Ниже мы коснемся существенно инерционных нагрузок в сочетании с широтно-импульсной модуляцией.

Широтно-импульсная модуляция.

В этом способе используется цифровой входной код для формирования последовательности импульсов фиксированной частоты с длительностью импульсов, пропорциональной входному числу. Легче всего это сделать с помощью счетчика, компаратора и высокочастотного генератора тактовых импульсов (см. упражнение 9.4). Как и прежде, можно использовать простейший фильтр низких частот для того, чтобы сформировать выходное напряжение, пропорциональное среднему времени пребывания в высоком состоянии, т. е. пропорциональное цифровому входному коду. Наиболее часто этот вид Ц/А-преобразования используется, когда сама нагрузка является системой с медленной реакцией; в этом случае широтно-импульсный модулятор генерирует точные порции энергии, усредняемые системой, подключенной в качестве нагрузки. Нагрузка, например, может быть емкостной (как в стабилизаторе с импульсным регулированием, см. гл. 6), термической (термостатированная ванна с нагревателем), механической (система автоматического регулирования скорости ленты) или электромагнитной (большой электромагнитный регулятор).

Упражнение 9.4. Постройте схему формирования импульсной последовательности с длительностью импульсов, пропорциональной -разрядному двоичному входному коду. Используйте счетчики и компараторы (с соответствующими расширителями).

Умножитель частоты с усреднением.

Схему умножителя частоты, описанную в разд. 8.28, можно использовать для создания простого ЦАП. Параллельный двоичный или двоично-десятичный входной код преобразуется в последовательность выходных импульсов со средней частотой, пропорциональной цифровому входу; для формирования выхода по постоянному току, пропорционального цифровому входному коду, можно, как и для описанного выше преобразователя частоты в напряжение, использовать простое усреднение, хотя в данном случае величина постоянной времени выхода может оказаться недопустимо большой, поскольку время усреднения на выходе умножителя частоты должно быть равно наибольшему периоду выходного сигнала умножителя. Достоинства умножителей частоты как Ц/А-преобразователей особенно проявляются, когда выход усредняется за счет сильной инерционности самой нагрузки.

По-видимому, лучше всего применять такие преобразователи при цифровом управлении температурой, где по каждому выходному импульсу частотного умножителя происходит переключение полных периодов напряжения переменного тока на нагревателе. Частотный умножитель при этом организуется таким образом, чтобы его самая низкая выходная частота была бы равна целочисленному делителю 120 Гц, а для коммутирования напряжения переменного тока (при пересечении нуля) по логическим сигналам используется твердотельное реле (или симистор).

Обратите внимание, что последние три способа преобразования основывались на усреднении во времени, в то время как методы на основе цепной резисторной схемы и источиков тока по существу «мгно-венны». Эта особенность присуща и различным методам аналого-цифрового преобразования. Усредняет ли преобразователь входной сигнал или преобразует отсчеты мгновенно имеет, как вы вскоре убедитесь на некоторых примерах, большое значение.

<< Предыдущий параграф Следующий параграф >>
Оглавление