Главная > Схемотехника > Искусство схемотехники, Т.3
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

11.12. Запоминающие устройства

В обычном микрокомпьютере увеличить объем памяти несложно вам лишь надо решить, сколько мегабайт стоит добавить, и к какому поставщику обратиться. Больше умственных усилий надо затратить при разработке прибора с микропроцессорным управлением, где распределение памяти является элементом проектирования, и где совместно используются блоки запоминающих устройств разных типов - энергонезависимые ПЗУ для хранения программ, а энергозависимые ОЗУ для временного размещения данных и стеков, а также как рабочее пространство программы.

(См. оригинал)

Рис. 11.29. 12-разрядные двухканальвые ЦАП (с любезного разрешения Analog Devices), а - микросхема 7537 с шириной загрузки 1 байт; б - микросхема 7547 с шириной загрузки 12 бит.

Энергонезависимые ПЗУ с «зашитыми» программами широко используются в микропроцессорных устройствах, чтобы избавиться от необходимости каждый раз при включении прибора загружать программу. В настоящем разделе мы рассмотрим различные виды памяти: статические и динамические ОЗУ (оперативные запоминающие устройства), РПЗУ (репрограммируемые постоянные запоминающие устройства), ЭРПЗУ (электрически стираемые репрограммируемые постоянные запоминающие устройства). Как только вы немного в них разберетесь, выбор уже не составит труда. Можете сразу обратиться к рис. 11.35, где мы свели воедино типы запоминающих устройств.

Статические и динамические ОЗУ.

В статических ОЗУ биты хранятся в матрицах триггеров, в то время как в динамических ОЗУ - в заряженных конденсаторах. Бит, записанный в статическое ОЗУ, остается в нем до тех пор, пока не будет перезаписан, или пока не выключится источник питания. В динамическом ОЗУ данные, если их не «регенерировать», исчезнут менее чем через секунду. Другими словами, динамическое ОЗУ непрерывно забывает данные, и чтобы их сохранить, приходится периодически опрашивать «строки» двумерной матрицы битов в микросхеме памяти. Например, в ОЗУ объемом 256 кбит к каждому из 256 рядов приходится обращаться каждые 4 мс.

Вы можете задаться вопросом, кому же придет в голову выбирать динамическое ОЗУ? Дело в том, что обходясь без триггеров, динамическое ОЗУ занимает меньше места, в результате чего микросхема большей емкости оказывается дешевле. Например, популярное сегодня статическое ОЗУ емкостью кбит) стоит около 10 долл., в два раза больше нынешней цены динамического ОЗУ емкостью 1 Мбит. В результате, используя динамические ОЗУ, вы за половину стоимости будете иметь в 4 раза больше памяти.

Теперь, наверное, вы удивляетесь, кому же нужны статические ОЗУ (что-то вас кидает из стороны в сторону)? Основное достоинство статических ОЗУ заключается в их простоте. Отпадает необходимость в циклах регенерации, не нужно заботиться об их синхронизации (циклы регенерации конкурируют с обычными циклами обращения к памяти и должны поэтому жестко синхронизоваться). В простых системах с ограниченным числом микросхем памяти естественно использовать статические ОЗУ. К тому большая часть нынешних статических ОЗУ используют КМОП-технологию, что существенно для приборов с батарейным питанием. Между прочим, статическое КМОП ОЗУ, автоматически переключаемое на батарейное питание при выключении основного (с помощью микросхемы управления питанием типа ), представляет неплохую альтернативу ПЗУ в качестве энергонезависимой памяти. Другим достоинством статических ОЗУ является их высокое быстродействие (выпускаются микросхемы с характерным временем 25 не и менее), а также удобная компоновка секциями по 8 бит. Рассмотрим оба типа ОЗУ подетальнее.

Статические ОЗУ. Мы уже столкнулись со статическим ОЗУ в нашей микропроцессорной разработке, где одно такое ОЗУ емкостью использовалось для размещения данных, стека и рабочей области (программа была записана в РПЗУ). Организовать обмен данными со статическим ОЗУ проще простого: в цикле чтения вы устанавливаете сигналы адреса, выбора микросхемы (CS) и разрешения выхода (ОЕ); запрошенные данные появляются на тристабильных линиях данных спустя максимум (адресное время доступа). В цикле записи вы устанавливаете сигналы адреса, данных и CS, а затем (спустя время упреждения адреса ) импульс разрешения записи (WE); достоверные данные записываются в конце импульса WE. Действующие временные ограничения для 120 не статического ОЗУ показаны на рис. 11.30, из которого видно, что «быстродействие» памяти - это время от установки достоверного адреса до достоверных данных (при чтении) или до завершения цикла записи (при записи).

Рис. 11.30. Синхронизация статического ОЗУ с быстродействием 120 нс. а - цикл чтения, б - цикл записи.

Для статических ОЗУ интервал времени между последовательными обращениями к памяти («длительность цикда») равен времени доступа; для динамических ОЗУ, как будет показано ниже, это не так.

Микросхемы статических ОЗУ могут иметь емкость от 1 Кбит (или меньше) до 1 Мбит при ширине 1, 4 или 8 бит. Быстродействие (время доступа) колеблется от 150 до 10 не или около того. В настоящее время широко используются недорогие статические КМОП ОЗУ емкостью с временем доступа 80 не, а также меньше по емкости, но более быстродействующие не) статические КМОП ОЗУ для кеш-памяти. Варианты микросхем могут иметь отдельные выводы для входов и выходов, два порта доступа и то или иное внешнее оформление (например, однорядный корпус ).

Может быть это и существенно, однако заметьте, что вам не надо заботиться, чтобы линии данных ЦП подключались обязательно к одноименным выводам микросхемы памяти - ведь независимо от порядка соединения вы при чтении всегда получите то же, что записали! Это замечание справедливо и для адресов. Однако не пытайтесь так поступить с ПЗУ.

Упражнение 11.18. А почему?

Динамические ОЗУ. По сравнению со статическими ОЗУ динамические ОЗУ - это сплошная мигрень. На рис. 11.31 показан нормальный цикл. Адрес (содержащий, например, для ОЗУ объемом 1 Мбайт 20 бит) расщепляется на две группы и мультиплексируется на вдвое меньшее число выводов, сначала «адрес строки», стробируемый сигналом Address Strobe - строб адреса строки), а затем «адрес колонки», стробируемый сигналом CAS (Column Address -строб адреса колонки). Данные записываются (или читаются в соответствии с состоянием входа направления ) вслед за установкой CAS. Перед началом следующего цикла памяти должно пройти некоторое время «выдержки RAS», поэтому длительность цикла больше времени доступа; например, динамическое ОЗУ может иметь время доступа 100 не и длительность цикла 200 не. Цикл регенерации выглядит так же, но без сигнала CAS. Вообще-то обычные обращения к памяти отлично ее регенерируют, если только вы можете гарантировать обращения со всеми возможными адресами строк!

Динамические ОЗУ, как и статические, выпускаются с шириной данных 1, 4 и 8 бит, емкостью от 64 Кбит до 4 Мбит и с быстродействием приблизительно от 70 до 150 не. Наиболее популярны большие -битовые микросхемы, что вполне объяснимо: если вам нужна большая матрица памяти, скажем объемом 4 Мбайт и шириной 16 бит, и имеются в наличии ОЗУ емкостью 1 Мбит с организацией , имеет смысл использовать -битовые микросхемы, потому что (а) каждая линия данных будет подключена только к двум микросхемам (а не к 16), что существенно уменьшит емкостную нагрузку, и (б) эти микросхемы занимают меньше места, потому что меньшее число выводов данных более чем компенсирует дополнительные адресные выводы.

Рис. 11.31. Циклы чтения и записи динамического ОЗУ (Motorola, 120 нс).

Кроме того, -битовые микросхемы, как правило, дешевле. Приведенные рассуждения справедливы, если вы строите большую память, и не относятся, например, к нашему простому микропроцессору с памятью Заметьте, однако, что улучшенная технология упаковки микросхем с высокой плотностью уменьшает важность минимизации числа выводов.

Существует ряд способов генерации последовательности мультиплексированных адресов и сигналов RAS, С AS и , требуемой для управления динамическим ОЗУ. Поскольку это ОЗУ всегда подключается к микропроцессорной магистрали, вы начинаете работу с ним, обнаружив сигнал (или эквивалентный ему), говорящий о том, что установлен правильный адрес из пространства динамического ОЗУ (о чем свидетельствуют старшие адресные линии). Традиционный метод заключается в использовании дискретных компонент средней степени интеграции для мультиплексирования адреса (несколько -канальных -входовых мультиплексоров ) и генерации сигналов RAS, CAS, а также сигналов управления мультиплексором.

Требуемая последовательность создается с помощью сдвигового регистра, тактируемого с частотой, кратной тактовой частоте микропроцессора или, что лучше, с помощью линии задержки с отводами. Для организации периодических циклов регенерации (только RAS) вам потребуется еще несколько логических схем и счетчик, отсчитывающий последовательные адреса строк. На все это уйдет около 10 корпусов.

Привлекательным способом, альтернативным «дискретным» схемам управления динамическим ОЗУ, является использование ПЛМ, причем для генерации всех необходимых сигналов достаточно одной-двух микросхем. Еще проще взять специальную микросхему «поддержки динамического ОЗУ», например, . Такого рода микросхемы берут на себя не только мультиплексирование адресов и образование сигналов RAS/CAS, но также и арбитрацию регенерации вместе с образованием адресов строк; более того, они даже включают мощные драйверы и демпфирующие резисторы, которые нужны для подключения больших матриц микросхем памяти, как это будет объяснено ниже. К таким контроллерам динамических ОЗУ обычно прилагаются дополнительные микросхемы для синхронизации, а также обнаружения и коррекции ошибок; в результате небольшой набор микросхем полностью решает проблему включения динамического ОЗУ в вашу разработку.

Впрочем, почти полностью! Основные неприятности с динамическими ОЗУ начинаются, когда вы пытаетесь освободиться от наводок на всех этих стробирующих и адресных магистральных линиях. Суть проблемы заключается в том, что несколько десятков корпусов МОП-схем оказываются разбросанными на большой площади системной платы, причем ко всем корпусам подходят управляющие и адресные шины. Для подключения к ним нескольких десятков микросхем требуются мощные выходные каскады Шоттки; однако большая длина линий и распределенная входная емкость в сочетании с крутыми фронтами выходных каскадов приводят к появлению «звона» большой амплитуды. Часто можно увидеть на адресных линиях ОЗУ отрицательные выбросы до —2 В! Типичным средством борьбы (не всегда полностью успешной) является включение на выходе каждого драйвера последовательных демпфирующих резисторов с сопротивлением около 33 Ом. Другая проблема заключается в огромных переходных токах, часто достигающих величины на линию. Представьте себе микросхему -разрядного драйвера, у которого большинство выходов случайно переключаются в одном направлении, например, с высокого уровня на низкий. Это приводит к переходному току величиной около 1 А, который на некоторое время повышает потенциал нулевого вывода, а вместе с ним и всех выходов, которые должны были иметь низкий уровень. Отмеченная проблема отнюдь не носит академического характера - однажды мы наблюдали сбои в работе памяти как раз из-за таких переходных токов на нулевом выводе, образующихся из-за выбросов токов -драйвера. При этом наводки, проходящие в -драйверы той же микросхемы, оказывались достаточными для завершения цикла памяти!

Дополнительным источником наводок в динамических ОЗУ являются большие переходные токи, образованные микросхемами в целом, причем наиболее честные разработчики даже включают сведения об этом явлении в свои технические материалы (рис. 11.32). Обычным средством борьбы является установка шунтирующих конденсаторов, подключенных к нулевой линии с малой индуктивностью; считается разумным шунтировать каждую микросхему керамическим конденсатором с емкостью .

Мы пришли к выводу, что логические драйверы с внешними резисторами хорошо работают с динамическим ОЗУ, как и специальные драйверы типа , которые включают интегральные демпфирующие резисторы. Контроллер динамического ОЗУ , упоминавшийся выше, по заверениям разработчиков может обслуживать до 88 микросхем памяти без внешних компонент, давая при этом отрицательные выбросы не более —0,5 В.

Рис. 11.32. Переходные токи динамического ОЗУ.

Даже более важным, нежели выбор конкретного драйвера, является использование нулевых линий с низкой индуктивностью и частого шунтирования . Двухсторонние платы с узкими линиями заземления неминуемо приведут к неприятностям; макетные платы с накруткой проводов обычно немногим лучше.

Важно понимать, что сбои памяти, возникающие из-за наводок, могут в сильной степени зависеть от распределения бит в передаваемых данных и не всегда проявляются в простых тестах памяти на чтение/запись. Лучшим способом обеспечить надежную работу памяти является консервативное проектирование и исчерпывающее тестирование памяти (с осциллографическим исследованием форм сигналов).

Постоянные запоминающие устройства (ПЗУ).

ПЗУ относятся к памяти, неразрушаемой при выключении питания (энергонезависимой), и нужда в них возникает практически в любой компьютерной системе. К примеру, в микрокомпьютерах необходимо иметь по крайней мере небольшое ПЗУ для хранения последовательности команд начальной загрузки, которая включает не только строки выделения стека и инициализации портов и прерываний, но также и команды, обеспечивающие чтение операционной системы с диска. Когда ваш персональный компьютер выполняет тестирование памяти и затем загружает DOS, он выполняет приказы некоторого ПЗУ. Кроме того, для микрокомпьютера типично хранение в ПЗУ некоторой части операционной системы (обычно наиболее аппаратно-зависимых модулей); эта часть называется «базовой системой ввода-вывода» (basic I/O system, BIOS) и обеспечивает стандартный механизм для обращения операционной системы к конкретным портам. ПЗУ широко используются для хранения различных таблиц, например, для генератора символов, отображаемых на экране дисплея. В предельном случае вообще вся операционная система, включая даже компиляторы и графические программы, может размещаться в ПЗУ. Например, в микрокомпьютере Macintosh значительная часть системного программного обеспечения записана в ПЗУ, и почти все 256 Кбайт ОЗУ отдаются пользователю. Однако такой «ПЗУ-ориентированный» подход используется в микрокомпьютерах относительно редко ввиду его негибкости; заметьте, однако, что исправление ошибок и умеренные усовершенствования программного обеспечения могут осуществляться с помощью заплат, размещаемых в ОЗУ.

В приборах с микропроцессорным управлением ПЗУ используются более широко. В ПЗУ хранится вся автономная программа, а энергозависимое ОЗУ используется только для хранения массивов и временных данных. Именно так было сделано в нашем усреднителе сигналов. ПЗУ часто оказываются полезными в дискретной цифровой аппаратуре, например, для конструирования произвольных конечных автоматов, или в качестве хранилища таблиц поправок для линеаризации функции отклика измерительной системы. Рассмотрим кратко разные виды энергонезависимой памяти: ПЗУ с масочным программированием, а также электрически стираемые ЭРПЗУ.

РПЗУ. Стираемые программируемые постоянные запоминающие устройства выполняются в виде больших микросхем с кварцевым окном. Это, несомненно, самый популярный тип энергонезависимой памяти для компьютеров. РПЗУ используют КМОП- и МОП-технологию и состоят из больших матриц полевых и МОП-транзисторов с плавающим затвором, которые можно зарядить с помощью «лавинной -процесса пробоя слоя, изолирующего затвор, при приложении напряжения свыше 20 В. Данные хранятся в РПЗУ неограниченно долго в виде ничтожного заряда (около 106 электронов) изолированных «погребенных» затворов, которые можно рассматривать как конденсаторы с постоянной времени порядка столетий. Чтобы прочитать состояние отдельного конденсатора, ему надо выступить в качестве затвора канала полевого МОП-транзистора. Поскольку затвор электрически недоступен, стереть заряд можно лишь облучая микросхему интенсивным потоком ультрафиолетовых лучей в течение 10-30 мин, отчего запасенный заряд стекает за счет явления фотопроводимости. В результате отдельные байты РПЗУ выборочно стереть нельзя.

В первом издании этой книги мы упоминали «классическую» микросхему 2716, РПЗУ стоившую 25 долл. Теперь она стала такой классической, что ее уже нигде не достанешь! Типичные РПЗУ нашего времени имеют емкость от до и цену несколько долларов. Время доступа обычно составляет 150— 300 не, хотя такие компании, как Cypress, предлагают ПЗУ небольшого объема с быстродействием 25 не. Чтобы запрограммировать РПЗУ, к нему надо просто приложить повышенное напряжение (обычно 12,5 или 21 В), устанавливая при этом требуемые значения байтов. Исходные алгоритмы требовали на программирование каждого байта (что дает 100 с для микросхемы 2716, но для РПЗУ умеренного объема превращается в полчаса). Выпуск больших ПЗУ потребовал от разработчиков изобретения более совершенных алгоритмов, в которых каждый байт программируется последовательностью импульсов длительностью , причем после каждой записи делается попытка чтения; когда байт считывается правильно, выполняется окончательная запись, равная по длительности утроенной сумме всех предыдущих. Большая часть байтов программируется первым же импульсом, в результате на каждый байт тратится около , а на все ПЗУ объемом - 2 мин.

РПЗУ очень удобны при разработке опытных образцов, так как после стирания их можно использовать повторно. Они также применяются при выпуске небольших партий приборов. В продаже имеются более дешевые варианты РПЗУ без кварцевого окна, иногда называемые «РПЗУ однократного программирования». Хотя эти микросхемы не следовало бы называть РПЗУ, инженеры не желают изменять привычное название. Консервативные производители РПЗУ гарантируют сохранение в них информации в течение лишь 10 лет. Эта величина предполагает наихудшие условия (в частности, высокую температуру, которая приводит к утечке заряда); в действительности РПЗУ, похоже, не теряют данные, если только вам не попалась дефектная партия.

Для РПЗУ характерно ограниченное число циклов репрограммирования, т. е. стирания и программирования заново. Производители неохотно называют это число, хотя вы можете считать, что микросхема заметно ухудшит свои характеристики лишь после 100 или около того циклов стирания / программирования.

Рис. 11.33. Микроконтроллер с РПЗУ. а - 8-разрядный микроконтроллер с контактами для установки РПЗУ; б - 8-разрядный микроконтроллер со встроенным РПЗУ.

Масочные ПЗУ и ПЗУ с плавкими перемычками. Масочно-программируемые ПЗУ относятся к категории заказных микросхем, которые рождаются с указанным вами расположением бит. Фирма-производитель преобразует вашу спецификацию бит в маску металлизации, используемую далее при изготовлении ПЗУ. Такая процедура хороша для больших партий микросхем, и вам, надеемся, не придет в голову заказывать ПЗУ с масочным программированием для макетного образца. Типичная стоимость составляет от 1 до 3 тыс. долл. за производственный цикл, и фирмы неохотно берут заказы на партии ПЗУ менее тысячи штук. При таких количествах микросхема может обойтись в несколько долларов.

Многие однокристальные микроконтроллеры содержат в том же корпусе несколько кбайт ПЗУ и ОЗУ, так что законченный прибор может обходиться без дополнительных микросхем памяти. В большинстве случаев микроконтроллерное семейство включает варианты, требующие внешнего ПЗУ, а иногда и варианты со встроенным РПЗУ (рис. 11.33). Это дает возможность при разработке прибора использовать вариант с РПЗУ (или внешним ПЗУ), куда можно записать программу, при подготовке же партии приборов обратиться к более дешевым контроллерам с масочным программированием.

Другим типом ПЗУ с однократным программированием являются ПЗУ с плавкими перемычками. При выпуске в них все биты установлены, и для сброса требуемых бит ПЗУ надо подвергнуть действию электрического тока. В качестве типичного примера можно привести микросхему Harris , КМОП ППЗУ (программируемое постоянное запоминающее устройство) объемом ППЗУ с плавкими перемычками выпускаются также на базе биполярной (ТТЛ) технологии.

ЭРПЗУ. Электрически стираемые программируемые ПЗУ могут быть выборочно стерты и электрически репрограммированы прямо в той же схеме, где они используются в качестве памяти. Такого рода ПЗУ идеально подходят для хранения констант конфигурации, параметров калибровки и прочей информации, которую нельзя записать в ПЗУ до включения компьютера. ЭРПЗУ, как и РПЗУ, используют технологию МОП с плавающим затвором.

Первые ЭРПЗУ требовали повышенных напряжений и длительной процедуры программирования. Современные микросхемы используют одно напряжение питания и работают практически так же, как и статические ОЗУ - другими словами, вы можете репрограммировать любой байт с помощью одного цикла записи на магистрали. В микросхеме ЭРПЗУ предусмотрены внутренние цепи для генерации повышенного программирующего напряжения, а внутренняя логика фиксирует данные и генерирует программирующую последовательность длительностью несколько миллисекунд, в которой на время процесса устанавливается флаг BUSY или в цикле чтения образуются инвертированные данные, чтобы показать, что идет процесс записи. Некоторые ЭРПЗУ реализуют оба этих протокола, обычно называемые .

Сопряжение с этими ПЗУ осуществляется просто - достаточно подключить их также, как обычные ОЗУ и использовать линию BUSY для возбуждения прерываний (либо считывать состояние BUSY или данных, и использовать его как флаг состояния) (см. рис. 11.34).

Рис. 11.34. ЭРПЗУ.

Протокол -опроса удобен тем, что ЭРПЗУ можно вставить в стандартный разъем для ОЗУ без каких-либо схемных изменений (разумеется, в ваши программы придется включить строки анализа считываемых назад данных и ожидания их совпадения с тем, что вы записываете). Поскольку запись в ЭРПЗУ выполняется относительно редко, фактически в прерываниях по линии RDY/BUSY необходимости не возникает.

КМОП ЭРПЗУ выпускаются в виде микросхем с емкостью по цене примерно 10-50 долл. Время доступа (200-300 не) и время программирования при использовании внутреннего усовершенствования алгоритма) сравнимы с показателями стандартного РПЗУ. ЭРПЗУ, как и РПЗУ, допускают ограниченное число циклов чтения записи. Хотя производители избегают называть конкретные цифры, можно встретить упоминание о 100000 циклах чтения записи при .

Замечание. Хотя ЭРПЗУ уникальны в том отношении, что допускают репрограммирование в рабочей схеме, их также можно запрограммировать и отдельно от места использования, в программаторе для РПЗУ. Это делает их очень удобными для разработки встроенного программного обеспечения, так как вам не надо ждать полчаса, пока РПЗУ со старой программой прожарится под ультрафиолетовым облучателем.

Имеются два любопытных варианта ЭРПЗУ. Фирмы National, Xicor и др. выпускают маленькие микросхемы ЭРПЗУ в с 8 выводами. Емкость этих схем может составлять от до бит; они работают в режиме последовательного доступа и оснащаются тактовым входом и единственной линией данных. Эти микросхемы трудно использовать без микропроцессора; однако в приборах с микропроцессорным управлением они очень удобны для хранения небольшого количества установочных параметров и проч. Та же фирма Xicor выпускает «электрически стираемый потенциометр , остроумное применение электрически стираемой памяти, в которой хранится положение «цифрового контакта». В эту микросхему встроена цепочка из 99 равных по величине резисторов, причем положение отвода от них, устанавливаемое программно, сохраняется в энергонезависимой памяти, входящей в ту же микросхему. Нетрудно представить себе прикладные задачи, в которых желательна автоматическая или дистанционная калибровка некоторого инструмента без механической настройки ручек управления.

Недавно появившаяся модификация ЭРПЗУ, называемая моментальной (flash), сочетает высокую плотность РПЗУ с репрограммированием в рабочей схеме, присущим ЭРПЗУ. Однако моментальные РПЗУ, как правило, не позволяют стирать отдельные байты, как это можно делать с обычными ЭРПЗУ. Так, моментальное ЭРПЗУ Intel допускает только полное стирание (как и РПЗУ), в то время как в микросхеме фирмы Seeq предусмотрено стирание либо посекторное (512 байт), либо целиком. Далее, большинство доступных сейчас моментальных ЭРПЗУ требуют дополнительного отключаемого источника питания +12 В на время стирания/записи, что является слишком дорогой ценой, если вспомнить, что обычные ЭРПЗУ питаются от единственного источника + 5 В.

Моментальные ЭРПЗУ могут выдерживать от 100 до 10000 программных циклов.

Технология производства ППЗУ продолжает развиваться, и мы с любопытством ожидаем, что она нам еще преподнесет; ждите и вы!

Энергонезависимые ОЗУ.

РПЗУ удобны для применения в качестве энергонезависимых ПЗУ, однако часто возникает необходимость иметь энергонезависимую оперативную память. Для этого можно использовать ЭРПЗУ, однако для них характерен очень длинный ) цикл записи (и ограниченное число циклов чтения/записи). Имеются две возможности достичь характерного для ОЗУ времени чтения записи ) при неограниченном числе циклов чтения записи: использовать либо статическое КМОП ОЗУ с резервным батарейным питанием, либо необычную микросхему фирмы Xicor, в которой объединены статическое ОЗУ и ЭРПЗУ.

Ранее уже обсуждался вопрос о резервном батарейном питании ОЗУ, которое убивает двух зайцев разом: низкая цена и высокая скорость чтения записи ОЗУ сочетаются с энергонезависимостью ПЗУ. Разумеется, в этом случае следует использовать КМОП ОЗУ с известным значением критического тока. Некоторые фирмы выпускают «энергонезависимые ОЗУ», размещая в обычном -корпусе вместе с микросхемой КМОП ПЗУ литиевую батарейку и логические схемы переключения питания. В качестве примера можно указать микросхемы фирмы Dallas Semiconductor эта фирма также выпускает линейку «интеллектуальных разъемов», содержащих батарейку и логические схемы, с помощью которых обычные ОЗУ как по мановению волшебной палочки становятся энергонезависимыми. Учтите, что образованное таким образом энергонезависимое ОЗУ, строго говоря, не бессмертно; срок службы батарейки, а следовательно, и данных, около 10 лет. Как и для обычного статического ОЗУ, здесь нет ограничений на выдерживаемое памятью число циклов чтения записи.

-энергонезависимое ОЗУ) фирмы Xicor сочетает обычное статическое ОЗУ с «теневым» ЭРПЗУ в том же кристалле. Входной сигнал переносит содержимое ОЗУ в ЭРПЗУ при полной длительности цикла записи извлекаются данные быстрее, за время около . При наличии микросхемы контроля питающих напряжений из серии вы заблаговременно получаете предупреждение и можете сохранить содержимое ОЗУ еще до того, как напряжение В упадет до критического значения. Объявлено, что NO VRAM выдерживают 10000 операций сохранения и, подобно обычным ОЗУ, неограниченное число операций в ОЗУ.

Если сравнивать два описанных варианта энергонезависимых ОЗУ, то вариант с резервной батарейкой представляется в общем предпочтительным, поскольку позволяет использовать любое наличное ОЗУ, если только в нем предусмотрен режим отключения при нулевом токе. Это значит, что вы можете использовать большие ОЗУ последних выпусков, а также, например, выбрать наиболее быстродействующие ОЗУ, если это для вас важно. Хотя батарейки имеют конечный срок эксплуатации, для большинства приложений он достаточен. Для кратковременного (сутки или менее) хранения информации вы можете заменить литиевую батарейку двухслойным конденсатором большой емкости; такие конденсаторы в очень маленьких корпусах с емкостью до фарады и более предлагаются фирмами Panasonic, Sohio и др.

Запоминающие устройства: общая сводка.

Рис. 11.35 подытоживает важнейшие характеристики различных типов ЗУ. Из показанных на рисунке мы рекомендуем динамические ОЗУ шириной 1 бит для больших матриц памяти с возможностью чтения и записи, статические ОЗУ шириной 1 байт для небольших матриц памяти микропроцессорных систем, РПЗУ для хранения программ и параметров, не требующих перезаписи, и либо ЭРПЗУ (если длительность процесса записи не имеет значения), либо статические ОЗУ с резервным батарейным питанием (для достижения максимального быстродействия по чтению / записи) для энергонезависимого хранения модифицируемых данных.

Рис. 11.35. Типы запоминающих устройств.

<< Предыдущий параграф Следующий параграф >>
Оглавление