Главная > Физика > Основы расчета на устойчивость упругих систем
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 2. Устойчивые и неустойчивые состояния равновесия

Наглядной иллюстрацией устойчивого и неустойчивого равновесия служит поведения тяжелого шарика на гладкой поверхности (рис. 1.5). Интуиция и опыт подсказывают, что помещенный на вогнутую поверхность шарик останется на месте, а с выпуклой и седлообразной поверхностей он скатится. Положение шарика на вогнутой поверхности устойчиво, а положение шарика на выпуклой и седлообразной поверхностях неустойчиво. Аналогично два соединенных шарниром прямых стержня при растягивающей силе находятся в устойчивом положении равновесия, а при сжимающей силе — в неустойчивом (рис. 1.6).

Рис. 1.5.

Рис. 1.6.

Но интуиция может дать верный ответ только в простейших случаях; для более сложных систем одной интуиции оказывается недостаточно. Например, даже для сравнительно простой механической системы, изображенной на рис. 1.7, а, интуиция может лишь подсказать, что положение равновесия шарика на вершине при очень малой жесткости пружины будет неустойчивым, а с увеличением жесткости пружины оно должно стать устойчивым. Для изображенной на рис. 2.3, б системы стержней, соединенных шарнирами, на основе интуиции можно только сказать, что исходное положение равновесия этой системы устойчиво или неустойчиво в зависимости от соотношения между силой, жесткостью пружины и длиной стержней.

Для того чтобы решить устойчиво или неустойчиво равновесие механической системы, необходимо использовать аналитические признаки устойчивости. Наиболее общим подходом к изучению устойчивости положения равновесия в механике является энергетический подход, основанный на исследовании изменения полной потенциальной энергии системы при отклонениях от положения равновесия.

В положении равновесия полная потенциальная энергия консервативной механической системы имеет стационарное значение, причем, согласно теореме Лагранжа, положение равновесия устойчиво, если это значение соответствует минимуму полной потенциальной энергии. Не углубляясь в математические тонкости, поясним эти общие положения на простейших примерах.

В системах, изображенных на рис. 1.5, полная потенциальная энергия изменяется пропорционально вертикальному смещению шарика. Когда шарик опускается, его потенциальная энергия, естественно, уменьшается. Если шарик поднимается, то потенциальная энергия возрастает. Поэтому нижняя точка вогнутой поверхности соответствует минимуму полной потенциальной энергии и положение равновесия шарика в этой точке устойчиво. Вершина выпуклой поверхности соответствует стационарному, но не минимальному значению полной потенциальной энергии (в данном случае — максимальному значению). Поэтому положение равновесия шарика здесь неустойчиво. Стационарная точка на седлообразной поверхности тоже не соответствует минимуму полной потенциальной энергии (это так называемая точка мини-макса) и положение равновесия шарика здесь неустойчиво. Последний случай весьма характерен. В неустойчивом состоянии равновесия потенциальная энергия вовсе не должна достигать максимального значения. Положение равновесия не будет устойчивым во всех случаях, когда полная потенциальная энергия имеет стационарное, но не минимальное значение.

Рис. 1.7.

Для изображенной на рис. 1.6 стержневой системы также нетрудно установить, что при растягивающей силе вертикальное неотклоненное положение стержней соответствует минимуму потенциальной энергии и поэтому является устойчивым. При сжимающей силе неотклоненное положение стержней соответствует максимуму потенциальной энергии и является неустойчивым.

Предоставив возможность читателю самому установить условия устойчивости систем, изображенных на рис. 1.7, вернемся к двум рассмотренным в предыдущем параграфе задачам.

Полная потенциальная энергия упругой системы (с точностью до постоянного слагаемого, которое опускаем) складывается из внутренней энергии деформации U и потенциала внешних сил :

Составим выражение для полной потенциальной энергии стержня с упругим шарниром, нагруженного вертикальной силой (см. рис. 1.1). Энергия деформации упругого шарнира . Потенциал внешних сил с точностью до постоянного слагаемого равен взятому с обратным знаком произведению силы на вертикальное перемещение точки ее приложения, т. е. . Следовательно, полная потенциальная энергия

Рассматриваемая система имеет одну степень свободы: ее деформированное состояние полностью описывается одним независимым параметром. В качестве такого параметра взят угол , поэтому для исследования устойчивости системы нужно найти производные полной потенциальной энергии по углу .

Дифференцируя выражение (1.6) по , получим

Приравнивая нулю первую производную полной потенциальной энергии, приходим к уравнению (1.1), которое раньше было получено непосредственно из условий равновесия стержня. Исследование знака второй производной позволяет установить, какие из найденных положений равновесия устойчивы.

Исследуем устойчивость положений равновесия стержня, соответствующих двум независимым решениям (1.2). Первое из них соответствует вертикальному неотклоненному положению стержня при .

Согласно выражению (1.8) для этого положения равновесия

При полная потенциальная энергия минимальна и вертикальное положение стержня устойчиво, при полная потенциальная энергия максимальна и вертикальное положение стержня неустойчиво.

Для исследования устойчивости стержня в отклоненном положении подставим второе из решений (1.2) в выражение (1.8):

Если , то вторая производная полной энергии положительна, поскольку тогда , и отклоненное положение стержня, которое возможно при , всегда устойчиво.

Осталось еще не выясненным, устойчиво или неустойчиво положение равновесия, соответствующее точке пересечения двух решений при , поскольку в этой точке Вторая производная полной энергии равна нулю. Как известно из курса математического анализа, в таких случаях для исследования стационарной точки следует использовать высшие производные. Последовательно дифференцируя, находим

В исследуемой точке третья производная равна нулю, а четвертая положительна. Следовательно, в этой точке полная потенциальная энергия минимальна и неотклоненное положение равновесия стержня при устойчиво.

Результаты проведенного исследования устойчивости различных положений равновесия стержня с упругим шарниром представлены на рис. 1.8. Там же показано изменение полной потенциальной энергии системы при . Точки соответствуют минимумам полной потенциальной энергии и устойчивым отклоненным положениям равновесия; точка Максимуму энергии и неустойчивому вертикальному положению равновесия стержня.

Составим выражение полной потенциальной энергии . представленной на рис. 1.2. При отклонении стержня на угол пружина удлиняется на величину , а энергия деформации пружины определяется выражением .

Потенциал внешних сил подсчитывается так же, как и в предыдущей задаче. Таким образом,

Последовательно дифференцируя, находим

Приравнивая нулю первую производную полной потенциальной энергии, получим уравнение равновесия (1.3). Исследуя знак второй производной, можно выяснить, какие из положений равновесия стержня устойчивы. Так, для неотклоненного положения при вторая производная полной энергии равна

Следовательно, при вторая производная положительна и вертикальное положение равновесия устойчиво; при вторая производная отрицательна и вертикальное положение неустойчиво. В отклоненном от вертикали положении равновесия, описываемом зависимостью , вторая производная полной потенциальной энергии равна

Таким образом, при вторая производная отрицательна и отклоненное положение равновесия стержневой системы неустойчиво.

Положения равновесия, соответствующие точкам пересечения двух решений (1.4), неустойчивы (например, неотклоненное положение стержня при ). В этом нетрудно убедиться, определяя в этих точках знаки высших производных.

Рис. 1.8.

На рис. 1.9 показаны результаты проведенного исследования и характерные кривые изменения полной потенциальной энергии при различных уровнях нагружения.

Рис. 1.9.

Продемонстрированный на простейших примерах путь исследования устойчивости положений статического равновесия упругих систем используют и в случае более сложных систем.

С усложнением упругой системы растут технические трудности его реализации, но принципиальная основа — условие минимума полной потенциальной энергии — полностью сохраняется.

<< Предыдущий параграф Следующий параграф >>
Оглавление