111. Хроматография.
Мысль о том, что адсорбция в динамических условиях улучшит разделение сложных смесей, впервые возникла у М. С. Цвета. Исходя из этой идеи, он в 1903 г. предложил новый метод анализа таких смесей, названный им хроматографическим.
Сущность метода заключается в следующем. Раствор исследуемой смеси вводят в «хроматографическую колонку» — стеклянную трубку, заполненную адсорбентом, предварительно промытым, а затем пропитанным растворителем. Компоненты смеси адсорбируются в верхней части колонки, не разделяясь или разделяясь лишь частично; образуется первичная хроматограмма (рис. 98, а). Затем ее «проявляют». Для этого в колонку подают чистый растворитель (элюент), который десорбирует ранее адсорбированные вещества и перемещает их со своим потоком вниз по колонке.
Рис. 98. Проявительная (элюентная) хроматография: а —первичная хроматограмма; б — проявленная хроматограмма; e — выходная кривая проявительносо анализа.
При движении по колонке происходят многократные акты адсорбции и десорбции, приводящие к разделению компонентов смеси в соответствии с законом адсорбционного замещения М. С. Цвета (1910 г.), который состоит в следующем: если растворенные вещества А, В, С,... по своему относительному сродству к адсорбенту образуют адсорбционный ряд
, тогда каждый из членов адсорбционного ряда вытесняет последующий и, в свою очередь, вытесняется предыдущими, более сильно адсорбирующимися. В результате на колонке образуется проявленная хроматограмма (рис. 98,б). М. С. Цвет применил этот метод для разделения на адсорбентах белого цвета (мел, оксид кальция, крахмал, целлюлоза) смеси пигментов листьев растений. Проявленная хроматограмма расцвечивалась зонами разнообразной окраски. Отсюда возникло название предложенного М. С. Цветом метода — хроматография («цветозапись» от греч. «хромос» — цвет, «графе» — писать).
Продолжая промывание колонки растворителем, достигают выхода из нее разделяющихся веществ, которые обнаруживают путем анализа последовательных порций вытекающего из колонки раствора (элюата). Если построить выходную кривую, т. е. график зависимости концентрации элюата (С) от объема пропущенного через колонку раствора (К), то на этой кривой выходу Компонентов исходной смеси из колонки соответствуют хроматографические пики (рис. 98,в). Часто не происходит полного разделения компонентов и отдельные пики взаимно перекрываются. Построение выходных кривых является наиболее распространенной формой колоночной хроматографии, так как не связано ни с окраской разделяемых компонентов, ни с цветом адсорбента.
В 1936 г. М. М. Дубинин осуществил адсорбционную хроматографию паров; в последующие годы появились новые варианты хроматографического метода. В настоящее время хроматографией называют такие физико-химические методы разделения компонентов смесей газов, паров, жидкостей или растворенных веществ, которые осуществляют путем сорбции в динамических условиях.
В зависимости от преобладающего физико-химического сорбционного процесса, определяющего разделение компонентов смеси, различают хроматографию: адсорбционную, ионообменную и распределительную.
Разделяемые компоненты могут находиться в подвижной жидкой пли газовой фазе, а неподвижная фаза может быть как твердой, так и жидкой. Зерна адсорбента или ионита могут заполнять колонну (колоночная хроматография) или составлять тонкий плотный слой на стеклянной пластинке (тонкослойная хроматография).
Создание и совершенствование хроматографических методов исследования в значительной степени обусловило быстрые темпы развития современной молекулярной биологии, химии редкоземельных и трансурановых элементов. Хроматографические методы выделения и разделения разнообразных веществ осуществлены также в крупных промышленных масштабах.
Большое значение для анализа очень малых объемов растворов
приобрела распределительная хроматография на бумаге, предложенная Консденом (Англия) в 1944 г. Она основана на том, что между двумя несмешивающимися жидкостями третий компонент распределяется в соответствии с характерным для этого вещества коэффициентом распределения, представляющим отношение его концентраций в граничащих жидкостях (закон распределения, см. § 76).
Для осуществления хроматографического процесса необходимо, чтобы один слой жидкости перемещался относительно другого. В этом случае распределение растворенных веществ между двумя слоями жидкости происходит многократно в динамических условиях. При хроматографии на бумаге одна, более полярная жидкость сорбируется волокнами бумаги, образуя фиксированную (неподвижную) жидкую фазу; другая, менее полярная жидкость, смачивая волокна бумаги, поднимается по листу в силу явления капиллярного поднятия.
На рис. 99 показана, схема распределительной хроматографии на бумаге («восходящая хроматография»). На стартовую линию полости хроматографической бумаги раздельно наносят по капле исследуемого раствора смеси веществ (А + Б) и предполагаемого компонента смеси — «свидетеля» (рис. 99,I). Нижний край полоски бумаги погружают в растворитель. Когда фронт растворителя почти достигнет верхнего края полоски бумаги, пройдя путь
(рис. 99,II), компоненты исходной смеси, при правильно подобранной системе растворителей, разделяются на ряд пятен, которые выявляют соответствующими цветными реакциями на ожидаемые компоненты и сравнением с положением пятен «свидетелей». Путь, пройденный компонентом А исходной смеси
, определяется коэффициентом распределения для данного вещества.
Рис. 99. Восходящая распределительная хроматография на бумаге.
Относительная величина этого пути
, обозначаемая
, является характерной для каждого вещества в определенной системе растворителей.