88. Ионно-молекулярные уравнения.
При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около

теплоты:
Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые — в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода — очень слабый электролит, см. § 90):
Рассматривая получившееся уравнение, видим, что в ходе реакции ионы
и
не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:
Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу — к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.
Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением
Однако, как мы увидим ниже, вода — очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.
При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:
Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:
Как видно, ионы
и
не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:
Это и есть ионно-молекулярное уравнение рассматриваемого процесса.
Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами
и
в растворе, так что процесс, выраженный последним уравнением, обратим:
Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования
из ионов практически доходит до конца.
Образование осадка
будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы
и
. Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов
и, наоборот, с помощью хлорид-ионов — присутствие ионов серебра; ион
может служить реактивом на ион
, а ион
— реактивом на ион
.
В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.
Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл. 15.
Таблица 15. Растворимость важнейших солей в воде
Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качеству примера несколько реакций, протекающих с участием слабых кислот и оснований.
Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу — образованию молекул воды из ионов водорода и гидроксид-иона.
Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.
Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):
Здесь сильные электролиты — гидроксид натрия и образующаяся соль, а слабые — кислота и вода:
Как видно, не претерпевают изменении в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:
Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):
Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул — гидроксид аммония и воду:
Не претерпевают изменений ионы
. Опуская их, получаем ионно-молекулярное уравнение:
Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):
В этой реакции все вещества, кроме образующейся
слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:
Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.
Как уже указывалось, реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ — слабый электролит и при которых молекулы малоднссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца.
Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции: