Главная > Химия > Общая химия
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

229. Молибден (Mollbdenium).

Главным природным соединением молибдена является молибденит, или молибденовый блеск, — минерал, очень похожий по внешнему виду на графит и долгое время считавшийся таковым. В 1778 г. Шееле, показал, что при обработке молибденового блеска азотной кислотой получается белый остаток, обладающий свойствами кислоты. Шееле назвал его молибденовой кислотой и сделал заключение, что сам минерал представляет собой сульфид нового элемента. Пять лет спустя этот элемент был получен в свободном состоянии путем прокаливания молибденовой кислоты с древесным углем.

Общее содержание молибдена в земной коре составляет . Залежи молибденовых имеются в СССР, Чили, Мексике, Норвегии и Марокко. Большие запасы молибдена содержатся в сульфидных медных рудах.

Для получения металлического молибдена из молибденового блеска последний переводят обжигом в , из которого металл восстанавливают водородом. При этом молибден получается в виде порошка.

Компактный молибден получают главным образом методом порошковой металлургии. Этот способ состоит из прессования порошка в заготовку и спекания заготовки.

При прессовании порошка из него получают заготовки — тела определенной формы, обычно — бруски (штабики). Штабики молибдена получают в стальных пресс-формах при давлении до . Спекание штабиков в атмосфере водорода проводят в две стадии. Первая из них — предварительное спекание — проводится при и имеет целью повысить прочность и электрическую проводимость штабиков. Вторая стадия — высокотемпературное спекание — осуществляется пропусканием электрического тока, постепенно нагревающего штабики до . При этом получается компактный металл. Спеченные штабики поступают на механическую обработку — ковку, протяжку.

Для получения крупных заготовок молибдена применяют дуговую плавку, позволяющую получать слитки массой до . Плавку в дуговых печах ведут в вакууме. Между катодом (пакет спеченных штабиков молибдена) и анодом (охлаждаемый медный тигель) зажигают дугу. Металл катода плавится и собирается в тигле. Вследствие высокой теплопроводности меди и быстрого отвода теплоты молибден затвердевает.

Для получения особо чистого молибдена и других тугоплавких металлов применяется плавка в электронном пучке (электронно-лучевая плавка).

Нагревание металла электронным пучком основано на превращении в теплоту большей части кинетической энергии электронов при их столкновении с поверхностью металла. Установка для электронно-лучевой плавки состоит из электронной пушки, создающей управляемый поток электронов, и плавильной камеры. Плавку ведут в высоком вакууме, что обеспечивает удаление примесей, испаряющихся при температуре плавки . Кроме того, высокое разрежение необходимо для предотвращения столкновений электронов с молекулами воздуха, что приводило бы к потере электронами энергии. После электронно-лучевой плавки чистота молибдена повышается до .

Кроме компактных тугоплавких металлов методами порошковой металлургии получают ряд других материалов. Важнейшими из них являются карбидные твердые сплавы, ферриты, пористые материалы, керметы.

О карбидных твердых сплавах рассказывается в § 230, о ферритах — в § 242. К изделиям из пористых материалов относятся пористые подшипники и металлические фильтры. Пористые подшипники изготовляют спеканием порошков бронзы и графита. Поры таких подшипников пропитывают смазочным материалом, что дает возможность использовать их в условиях затрудненной смазки и при опасности загрязнения продукции (например, в пищевой или текстильной промышленности). Металлические фильтры изготовляют спеканием порошков меди, никеля, нержавеющей стали. Они служат для очистки различных жидкостей, масел, жидкого топлива, обладают длительным сроком службы, устойчивы при повышенных температурах и могут быть изготовлены в широком диапазоне пористости.

Керметы, или керамикометаллические материалы, получают спеканием смесей порошков металлов и неметаллических компонентов — тугоплавких оксидов, карбидов, боридов и др. В качестве металлической составляющей используют, главным образом, металлы подгрупп хрома и железа. Эти материалы сочетают в себе тугоплавкость, твердость и жаростойкость керамики с проводимостью, пластичностью и другими свойствами металлов.

Молибден — серебристо-белый металл плотностью , плавящийся при . При комнатной температуре он не изменяется на воздухе, но при накаливании окисляется в белый триоксид . Соляная и разбавленная серная кислоты при комнатной температуре не действуют на молибден; он растворяется в азотной кислоте или горячей концентрированной серной кислоте.

Около всего добываемого молибдена расходуется на производство специальных сортов стали. Он входит в состав многих нержавеющих сталей; кроме того, его введение способствует увеличению их жаропрочности.

Из сплава молибдена с танталом изготовляют лабораторную посуду, применяемую в химических лабораториях вместо платиновой. Из чистого молибдена изготовляют детали электронных ламп и ламп накаливания — аноды, сетки, катоды, вводы тока, держатели нитей накала.

В своих соединениях молибден проявляет положительные степени окисленности: шесть, пять, четыре, три и два. Наиболее стойкими являются соединения молибдена (VI). Важнейшие из соли молибденовой кислоты (молибдаты), часто имеющие сложный состав.

Молибдат аммония применяется в анализе для открытия и количественного определения фосфорной кислоты, с которой он образует характерный желтый осадок состава . Последний представляет собою аммонийную соль комплексной фосфорномолибденовой кислоты, относящейся к классу гетерополикислот (см. § 204).

<< Предыдущий параграф Следующий параграф >>
Оглавление